specification by example tools

specification by example tools are essential components in modern software development,
enabling teams to create clear, precise requirements through collaborative examples. These tools
facilitate communication between stakeholders, developers, and testers by transforming user stories
and acceptance criteria into executable specifications. By integrating examples directly into the
development process, specification by example tools help reduce misunderstandings, improve
quality, and accelerate delivery. This article explores the most popular specification by example tools,
their features, benefits, and how they enhance agile and behavior-driven development (BDD)
workflows. Additionally, it covers best practices for choosing and implementing these tools effectively
in diverse project environments.

Overview of Specification by Example Tools

Key Features of Specification by Example Tools

Popular Specification by Example Tools in the Market

Benefits of Using Specification by Example Tools

Implementing Specification by Example Tools in Agile Environments

Best Practices for Effective Use of Specification by Example Tools

Overview of Specification by Example Tools

Specification by example tools are software applications designed to support the practice of defining
requirements through concrete, real-world examples. This approach aligns closely with behavior-
driven development (BDD) and acceptance test-driven development (ATDD), emphasizing
collaboration and clarity. These tools enable teams to write specifications in a format that is both
human-readable and executable, bridging the gap between technical and non-technical stakeholders.

At their core, specification by example tools allow users to create living documentation that evolves
alongside the software. This living documentation acts as a single source of truth, ensuring all team
members have a shared understanding of the product's expected behavior. The tools support writing
scenarios that describe how features should behave under various conditions, often in a structured
format such as Gherkin or similar domain-specific languages.

Purpose and Functionality

The primary purpose of specification by example tools is to capture requirements as concrete
examples that can be validated automatically or manually. These examples serve multiple functions:

¢ Clarify ambiguous requirements by providing concrete scenarios

e Facilitate automated testing through executable specifications

e Improve collaboration among product owners, developers, and testers

e Maintain traceability between requirements and tests

By embedding examples directly into the development lifecycle, these tools help reduce defects,
streamline communication, and accelerate feedback loops.

Key Features of Specification by Example Tools

Specification by example tools offer a range of features tailored to enhance requirements
management and test automation. Understanding these features is critical when selecting the right
tool for a project.

Collaborative Authoring

Most specification by example tools provide collaborative environments where stakeholders can co-
author and review specifications. This functionality often includes version control, commenting, and
role-based access to ensure transparency and accountability.

Executable Specifications

One of the defining features is the ability to convert written examples into executable tests. These
tools integrate with testing frameworks and continuous integration (Cl) pipelines to automate
acceptance testing, reducing manual effort and increasing reliability.

Traceability and Reporting

Effective traceability features link specifications to corresponding tests, code, and defects.
Comprehensive reporting capabilities enable teams to monitor test coverage, identify gaps, and track
progress against requirements.

Integration with Development Ecosystem

Leading specification by example tools seamlessly integrate with popular development environments,
issue trackers, and CI/CD tools. This interoperability facilitates smooth workflows and enhances
productivity.

Support for Domain-Specific Languages

These tools often support domain-specific languages (DSLs) such as Gherkin, which allow writing
scenarios in a natural language style. This makes specifications accessible to both technical and
business users.

Popular Specification by Example Tools in the Market

Several specification by example tools have gained prominence due to their robust features,
community support, and adaptability. The following are among the most widely used in the industry.

Cucumber

Cucumber is a widely adopted open-source tool that supports BDD by allowing users to write
executable specifications in Gherkin syntax. It integrates with multiple programming languages and
testing frameworks, making it versatile for various project types.

SpecFlow

SpecFlow is the .NET equivalent of Cucumber, designed to enable BDD practices in Microsoft
environments. It supports Gherkin syntax and integrates well with Visual Studio, Azure DevOps, and
other Microsoft tools.

LivingDoc

LivingDoc focuses on generating living documentation from specification by example artifacts. It
provides an intuitive interface for reviewing and maintaining up-to-date specifications linked to
automated tests.

FitNesse

FitNesse is a wiki-based tool that allows users to create and run acceptance tests as living
documentation. It emphasizes collaboration and is suitable for teams that value a knowledge-sharing
culture.

Behave

Behave is a BDD framework for Python that supports writing specifications in Gherkin format. It
facilitates integration of specification by example practices within Python development workflows.

Benefits of Using Specification by Example Tools

Incorporating specification by example tools into software development processes delivers numerous
advantages. These benefits contribute to improved product quality and team efficiency.

Enhanced Communication

By using concrete examples as a common language, specification by example tools bridge the gap
between business and technical teams. This reduces misunderstandings and ensures that all
stakeholders share the same expectations.

Improved Quality and Reduced Defects

Executable specifications serve as automated acceptance tests that validate functionality
continuously. This early and ongoing validation helps detect defects sooner, reducing costly rework.

Faster Feedback Loops

Automation enabled by these tools accelerates feedback to developers and product owners, allowing
rapid iteration and continuous improvement.

Living Documentation

The specifications created remain current and relevant as the software evolves, eliminating the
problem of outdated or forgotten documentation.

Traceability and Compliance

Specification by example tools provide traceability from requirements to tests and defects, supporting
regulatory compliance and audit readiness.

Implementing Specification by Example Tools in Agile
Environments

Agile methodologies emphasize collaboration, flexibility, and rapid delivery, making specification by
example tools an ideal fit. Implementing these tools effectively requires alignment with agile
principles and practices.

Integration with Agile Ceremonies

Specification by example tools facilitate discussions during sprint planning, backlog refinement, and
retrospectives. Using concrete examples helps teams clarify requirements early and adjust based on
feedback.

Continuous Integration and Delivery

By integrating specifications with CI/CD pipelines, teams ensure that acceptance tests run
automatically with every build. This supports the agile goal of delivering potentially shippable
increments frequently.

Collaborative Specification Workshops

Workshops involving product owners, developers, and testers use specification by example tools to
create and refine examples collaboratively. This practice fosters shared understanding and ownership.

Best Practices for Effective Use of Specification by
Example Tools

To maximize the benefits of specification by example tools, organizations should consider the
following best practices.

1. Start with Clear, Understandable Examples: Ensure that examples are simple, relevant,
and focused on business value.

2. Promote Cross-Functional Collaboration: Involve all stakeholders in defining and reviewing
specifications to enhance clarity and buy-in.

3. Automate Acceptance Tests: Link specifications to automated tests to enable continuous

validation and faster feedback.

4. Maintain Living Documentation: Regularly update and review specifications to keep them
aligned with evolving requirements.

5. Train Teams on Tool Usage: Provide adequate training and support to ensure effective
adoption and consistent use.

6. Integrate with Existing Toolchains: Leverage integrations with issue trackers, CI/CD, and
development environments to streamline workflows.

Adhering to these practices helps organizations fully leverage specification by example tools to
enhance software quality, collaboration, and delivery speed.

Frequently Asked Questions

What is Specification by Example (SBE) in software
development?

Specification by Example is a collaborative approach to defining requirements and functional tests
using realistic examples, ensuring shared understanding among stakeholders and improving software
quality.

What are the key benefits of using Specification by Example
tools?

Specification by Example tools help improve communication between developers, testers, and
business stakeholders, reduce misunderstandings, enable living documentation, and automate
acceptance testing based on real-world examples.

Which are some popular Specification by Example tools
available in the market?

Popular Specification by Example tools include Cucumber, SpecFlow, FitNesse, Concordion, and
LivingDoc, among others.

How do Specification by Example tools integrate with Agile
development processes?

Specification by Example tools support Agile by facilitating collaboration, enabling continuous
feedback through automated acceptance tests, and maintaining up-to-date living documentation that
evolves with the product.

Can Specification by Example tools be used with Behavior-
Driven Development (BDD)?

Yes, Specification by Example tools are often used alongside BDD practices since both emphasize
collaboration, shared understanding, and executable specifications written in natural language.

What formats do Specification by Example tools typically use
for defining examples?

Most Specification by Example tools use structured natural language formats like Gherkin, which allow
writing scenarios in Given-When-Then syntax that are easy for both technical and non-technical
stakeholders to understand.

How do Specification by Example tools help in automating
acceptance testing?

These tools link the examples defined in specifications directly to automated test scripts, enabling
tests to be executed automatically and ensuring the application meets the specified requirements
continuously.

Are Specification by Example tools suitable for non-technical
stakeholders?

Yes, Specification by Example tools are designed to be readable and writable by non-technical
stakeholders, promoting collaboration and shared understanding across business and technical
teams.

What challenges might teams face when adopting
Specification by Example tools?

Challenges include the initial learning curve, maintaining examples as requirements change, ensuring
collaboration among diverse teams, and integrating tools into existing development workflows.

How can teams measure the effectiveness of Specification by
Example tools?

Teams can measure effectiveness by tracking improved communication, reduced defects, faster
feedback cycles, increased automation of acceptance tests, and higher alignment between delivered
software and business requirements.

Additional Resources

1. Specification by Example: How Successful Teams Deliver the Right Software

This book, authored by Gojko Adzic, is a foundational guide to Specification by Example (SBE). It
explains how teams can use realistic examples to define requirements and automate functional tests,
ensuring that the delivered software meets business needs. The book covers practical techniques,

real-world case studies, and best practices for collaboration between developers, testers, and
business stakeholders.

2. Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing

Written by Gojko Adzic, this book focuses on improving communication between technical teams and
business stakeholders through Specification by Example. It provides actionable advice on writing
clear, executable requirements and acceptance tests that serve as living documentation. The book is
ideal for teams adopting Agile methodologies and aiming to reduce misunderstandings and rework.

3. Living Documentation: Continuous Documentation with Specification by Example

This book delves into the concept of living documentation, where specifications are continuously
updated and validated through automated tests. It highlights tools and techniques that integrate with
Specification by Example to keep documentation accurate and relevant throughout the software
development lifecycle. Readers will gain insights into maintaining clear and up-to-date documentation
that drives collaboration.

4. BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle

Though focused on Behavior-Driven Development (BDD), this book covers many principles
overlapping with Specification by Example. It guides readers through creating executable
specifications using tools like Cucumber, SpecFlow, and JBehave. The book emphasizes collaboration,
automation, and delivering software that meets business expectations.

5. Agile Testing: A Practical Guide for Testers and Agile Teams

By Lisa Crispin and Janet Gregory, this comprehensive guide includes coverage of Specification by
Example techniques as part of Agile testing practices. It teaches how testers can collaborate with

developers and product owners to define clear acceptance criteria and automate tests. The book

offers strategies to improve quality and ensure that software delivers value.

6. Example Mapping: Bridging the Gap Between User Stories and Acceptance Tests

This book introduces Example Mapping as a facilitation technique to help teams break down user
stories into concrete examples and rules. It complements Specification by Example by providing a
structured way to gather and organize requirements collaboratively. The approach improves clarity
and helps avoid ambiguity in acceptance criteria.

7. Test Automation with SpecFlow: Bridging the Gap Between Business and Technical Teams

Focused on the SpecFlow tool, this book demonstrates how to implement Specification by Example in
.NET environments. It covers writing Gherkin-based scenarios, automating acceptance tests, and
integrating with continuous integration pipelines. The book is practical for teams looking to adopt BDD
and SBE practices using SpecFlow.

8. Collaborative Specification: Techniques for Agile Teams

This book explores various collaborative techniques, including Specification by Example, to enhance
communication and shared understanding among Agile teams. It offers practical methods for
gathering requirements, defining acceptance criteria, and automating tests. The focus is on fostering
teamwork to deliver high-quality software efficiently.

9. Effective Acceptance Test-Driven Development with Agile Principles

This book combines principles of acceptance test-driven development (ATDD) with Specification by
Example practices. It guides readers through creating acceptance tests that serve as specifications
and automated checks, ensuring software aligns with customer needs. The book includes real-life
examples and emphasizes continuous collaboration between stakeholders.

Specification By Example Tools

Find other PDF articles:
https://explore.gcts.edu/calculus-suggest-001/pdf?dataid=EPG89-8484 &title=ap-calculus-ab-frg-202
3.pdf

specification by example tools: Specification by Example Gojko Adzic, 2011-06-02
Summary Specification by Example is an emerging practice for creating software based on realistic
examples, bridging the communication gap between business stakeholders and the dev teams
building the software. In this book, author Gojko Adzic distills interviews with successful teams
worldwide, sharing how they specify, develop, and deliver software, without defects, in short
iterative delivery cycles. About the Technology Specification by Example is a collaborative method
for specifying requirements and tests. Seven patterns, fully explored in this book, are key to making
the method effective. The method has four main benefits: it produces living, reliable documentation;
it defines expectations clearly and makes validation efficient; it reduces rework; and, above all, it
assures delivery teams and business stakeholders that the software that's built is right for its
purpose. About the Book This book distills from the experience of leading teams worldwide effective
ways to specify, test, and deliver software in short, iterative delivery cycles. Case studies in this
book range from small web startups to large financial institutions, working in many processes
including XP, Scrum, and Kanban. This book is written for developers, testers, analysts, and business
people working together to build great software. Purchase of the print book comes with an offer of a
free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's
Inside Common process patterns How to avoid bad practices Fitting SBE in your process 50+ case
studies === Table of
Contents Part 1 Getting started Part 2 Key process patterns Part 3 Case studies Key benefits Key
process patterns Living documentation Initiating the changes Deriving scope from goals Specifying
collaboratively Illustrating using examples Refining the specification Automating validation without
changing specifications Validating frequently Evolving a documentation system uSwitch RainStor
Iowa Student Loan Sabre Airline Solutions ePlan Services Songkick Concluding thoughts

specification by example tools: ATDD by Example Markus Gartner, 2013 With Acceptance
Test-Driven Development (ATDD), business customers, testers, and developers can collaborate to
produce testable requirements that help them build higher quality software more rapidly. However,
ATDD is still widely misunderstood by many practitioners. ATDD by Example is the first practical,
entry-level, hands-on guide to implementing and successfully applying it. ATDD pioneer Markus
Gartner walks readers step by step through deriving the right systems from business users, and then
implementing fully automated, functional tests that accurately reflect business requirements, are
intelligible to stakeholders, and promote more effective development. Through two end-to-end case
studies, Gartner demonstrates how ATDD can be applied using diverse frameworks and languages.
Each case study is accompanied by an extensive set of artifacts, including test automation classes,
step definitions, and full sample implementations. These realistic examples illuminate ATDD's
fundamental principles, show how ATDD fits into the broader development process, highlight tips
from Gartner's extensive experience, and identify crucial pitfalls to avoid. Readers will learn to
Master the thought processes associated with successful ATDD implementation Use ATDD with
Cucumber to describe software in ways businesspeople can understand Test web pages using ATDD
tools Bring ATDD to Java with the FitNesse wiki-based acceptance test framework Use examples
more effectively in Behavior-Driven Development (BDD) Specify software collaboratively through

https://explore.gcts.edu/gacor1-25/files?title=specification-by-example-tools.pdf&trackid=jKK68-9839
https://explore.gcts.edu/calculus-suggest-001/pdf?dataid=EPG89-8484&title=ap-calculus-ab-frq-2023.pdf
https://explore.gcts.edu/calculus-suggest-001/pdf?dataid=EPG89-8484&title=ap-calculus-ab-frq-2023.pdf

innovative workshops Implement more user-friendly and collaborative test automation Test more
cleanly, listen to test results, and refactor tests for greater value If you're a tester, analyst,
developer, or project manager, this book offers a concrete foundation for achieving real benefits
with ATDD now-and it will help you reap even more value as you gain experience.

specification by example tools: Agile Processes in Software Engineering and Extreme
Programming Giovanni Cantone, Michele Marchesi, 2014-06-30 This book contains the refereed
proceedings of the 15th International Conference on Agile Software Development, XP 2014, held in
Rome, Italy, in May 2014. Because of the wide application of agile approaches in industry, the need
for collaboration between academics and practitioners has increased in order to develop the body of
knowledge available to support managers, system engineers, and software engineers in their
managerial/economic and architectural/project/technical decisions. Year after year, the XP
conference has facilitated such improvements and provided evidence on the advantages of agile
methodologies by examining the latest theories, practical applications, and implications of agile and
lean methods. The 15 full papers, seven short papers, and four experience reports accepted for XP
2014 were selected from 59 submissions and are organized in sections on: agile development, agile
challenges and contracting, lessons learned and agile maturity, how to evolve software engineering
teaching, methods and metrics, and lean development.

specification by example tools: CESAR - Cost-efficient Methods and Processes for
Safety-relevant Embedded Systems Ajitha Rajan, Thomas Wahl, 2013-03-25 The book summarizes
the findings and contributions of the European ARTEMIS project, CESAR, for improving and
enabling interoperability of methods, tools, and processes to meet the demands in embedded
systems development across four domains - avionics, automotive, automation, and rail. The
contributions give insight to an improved engineering and safety process life-cycle for the
development of safety critical systems. They present new concept of engineering tools integration
platform to improve the development of safety critical embedded systems and illustrate capacity of
this framework for end-user instantiation to specific domain needs and processes. They also advance
state-of-the-art in component-based development as well as component and system validation and
verification, with tool support. And finally they describe industry relevant evaluated processes and
methods especially designed for the embedded systems sector as well as easy adoptable common
interoperability principles for software tool integration.

specification by example tools: Test Driven Lasse Koskela, 2007-08-31 In test driven
development, you first write an executable test ofwhat your application code must do. Only then do
you write thecode itself and, with the test spurring you on, you improve yourdesign. In acceptance
test driven development (ATDD), you usethe same technique to implement product features,
benefiting fromiterative development, rapid feedback cycles, and better-definedrequirements. TDD
and its supporting tools and techniques leadto better software faster. Test Driven brings under one
cover practical TDD techniquesdistilled from several years of community experience. With
examplesin Java and the Java EE environment, it explores both the techniquesand the mindset of
TDD and ATDD. It uses carefully chosen examplesto illustrate TDD tools and design patterns, not in
the abstractbut concretely in the context of the technologies you face at work.It is accessible to TDD
beginners, and it offers effective and less wellknown techniques to older TDD hands. Purchase of the
print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available
is all code from the book. What's Inside Learn hands-on to test drive Java code How to avoid
common TDD adoption pitfalls Acceptance test driven development and the Fit framework How to
test Java EE components-Servlets, JSPs, and SpringControllers Tough issues like multithreaded
programs and data access code

specification by example tools: Verified Software: Theories, Tools, Experiments Bertrand
Meyer, Jim Woodcock, 2008-06-29 A Step Towards Verified Software Worries about the reliability of
software are as old as software itself; techniques for allaying these worries predate even James
King’s 1969 thesis on “A program verifier. ” What gives the whole topic a new urgency is the
conjunction of three phenomena: the blitz-like spread of software-rich systems to control ever more

facets of our world and our lives; our growing impatience with deficiencies; and the
development—proceeding more slowly, alas, than the other two trends—of techniques to ensure and
verify software quality. In 2002 Tony Hoare, one of the most distinguished contributors to these
advances over the past four decades, came to the conclusion that piecemeal efforts are no longer
sufficient and proposed a “Grand Challenge” intended to achieve, over 15 years, the production of a
verifying compiler: a tool that while processing programs would also guarantee their adherence to
specified properties of correctness, robustness, safety, security and other desirable properties. As
Hoare sees it, this endeavor is not a mere research project, as might normally be carried out by one
team or a small consortium of teams, but a momentous endeavor, comparable in its scope to the
successful mission to send a man to the moon or to the sequencing of the human genome.

specification by example tools: The Art of Agile Development James Shore, Shane Warden,
2021-10-12 Most companies developing software employ something they call Agile. But there's
widespread misunderstanding of what Agile is and how to use it. If you want to improve your
software development team's agility, this comprehensive guidebook's clear, concrete, and detailed
guidance explains what to do and why, and when to make trade-offs. In this thorough update of the
classic Agile how-to guide, James Shore provides no-nonsense advice on Agile adoption, planning,
development, delivery, and management taken from over two decades of Agile experience. He brings
the latest ideas from Extreme Programming, Scrum, Lean, DevOps, and more into a cohesive whole.
Learn how to successfully bring Agile development to your team and organization--or discover why
Agile might not be for you. This book explains how to: Improve agility: create the conditions
necessary for Agile to succeed and scale in your organization Focus on value: work as a team,
understand priorities, provide visibility, and improve continuously Deliver software reliably: share
ownership, decrease development costs, evolve designs, and deploy continuously Optimize value:
take ownership of product plans, budgets, and experiments--and produce market-leading software

specification by example tools: Conceptual Modeling for E-Business and the Web Stephen W.
Liddle, Heinrich C. Mayr, Bernhard Thalheim, 2003-06-29 The objective of the workshops associated
with the ER2000 19th International Conference on Conceptual Modeling was to give participants the
opportunity to present and discuss emerging, hot topics, thus adding new perspectives to conceptual
modeling. This attracts communities which have begun to or which have already recognized the
importance of conceptual modeling for solving their problems. To meet this objective, we selected
the following two topics: { Conceptual Modeling Approaches for E-Business (eCOMO02000) aimed at
studying the application of conceptual modeling techniques speci cally to e-business. { The World
Wide Web and Conceptual Modeling (WCMZ2000) which analyzes how conceptual modeling can help
address the challenges of Web devel- ment, management, and use. eCOMO2000 is the rst
international workshop on Conceptual Modeling - proaches for E-Business. It was intended to work
out and to discuss the actual state of research on conceptual modeling aspects and methods within
the realm of the network economy, which is driven by both traditionally organized ent- prises and
dynamic networks. Following the philosophy of the ER workshops, the selection of eCOMO
contributions was done very carefully and restrictively (six accepted papers out of thirteen
submissions) in order to guarantee an excellent workshop program. We are deeply indebted to the
authors and to the members of the program committee, whose work resulted in this outstanding
program.

specification by example tools: Model Driven Engineering Languages and Systems Andy
Schurr, Bran V. Selic, 2009-09-30 The pioneering organizers of the ?rst UML workshop in Mulhouse,
France inthe summerof1998couldhardlyhaveanticipatedthat,in littleoveradecade,
theirinitiativewouldblossomintotoday’shighlysuccessfulMODELSconference series, the premier
annual gathering of researchersand practitioners focusing on a very important new technical
discipline: model-based software and system engineering. This expansion is, of course, a direct
consequence of the growing signi?cance and success of model-based methods in practice. The
conferences have contributed greatly to the heightened interest in the ?eld, attracting much young
talent and leading to the gradualemergence of its correspondingscienti?c and engineering

foundations. The proceedings from the MODELS conferences are one of the primary references for
anyone interested in a more substantive study of the domain. The 12th conference took place in
Denver in the USA, October 4-9, 2009 along with numerous satellite workshops and tutorials, as
well as several other related scienti?c gatherings. The conference was exceptionally fortunate to
have three eminent, invited keynote speakers from industry: Stephen Mellor, Larry Constantine, and
Grady Booch.

specification by example tools: BDD in Action, Second Edition John Ferguson Smart, Jan
Molak, 2023-06-20 Deliver software that does what it’s supposed to do! Behavior-Driven
Development guides your software projects to success with collaboration, communication
techniques, and concrete requirements you can turn into automated tests. In BDD in Action, Second
Edition you'll learn how to: Implement and improve BDD practices Prioritize features from business
goals Facilitate an example mapping session Write automated acceptance tests Scale up your
automated acceptance tests Deliver accurate reporting and documentation Around half of all
software projects fail to deliver on requirements. Behavior-Driven Development (BDD) helps make
sure that yours isn’t one of them. Behavior-Driven Development in Action, Second Edition teaches
you how to ensure that everyone involved in a software project—from developers to non-technical
stakeholders—are in agreement on goals and objectives. It lays out the communication skills,
collaborative practices, and useful automation tools that will let you seamlessly succeed with BDD.
Now in its second edition, this revised bestseller has been extensively updated with new techniques
for incorporating BDD into large-scale and enterprise development practices such as Agile and
DevOps. Foreword by Daniel Terhorst-North. About the Technology Behavior-Driven Development is
a collaborative software design technique that organizes examples of an application’s desired
behavior into a concrete, testable specification. Because the BDD process gathers input from all
areas of an organization, it maximizes the likelihood your software will satisfy both end users and
business stakeholders. The established collaboration practices and automation strategies in this
book will help you maximize the benefits of BDD for your dev team and your business clients. About
the Book In BDD in Action, Second Edition, you’ll learn to seamlessly integrate BDD into your
existing development process. This thoroughly revised new edition now shows how to integrate BDD
with DevOps and large-scale Agile systems. Practical examples introduce cross-functional team
communication skills, leading a successful requirements analysis, and how to set up automated
acceptance criteria. What’s Inside How BDD positively affects teamwork, dynamics, and
collaboration with stakeholders Help teams discover and analyze requirements, uncover
assumptions, and reduce risks Make acceptance, integration, and unit testing more effective
Automate reporting and living documentation to improve transparency About the Reader For all
development teams. No experience with BDD required. Examples in Java, JavaScript, and TypeScript
can be easily expressed in your chosen language. About the Author John Ferguson Smart is the
creator of the Serenity BDD framework and founder of the Serenity Dojo training school. Jan Molak
is the author of the Serenity/JS testing framework, Jenkins Build Monitor, and other CD and testing
tools.

specification by example tools: KORSO: Methods, Languages, and Tools for the
Construction of Correct Software Manfred Broy, Stefan Jahnichen, 1995-11-08 This book
constitutes the final report of the work carried out in the project KORSO (Korrekte Software) funded
by the German Federal Ministry for Research and Technology. KORSO is an evolutionary,
prototype-oriented project aimed at improving the theoretical foundations of quality-driven software
engineering and at implementing known techniques for applications of practical relevance. The 21
strictly refereed papers presented are organized in five sections on methods for correctness,
languages, development systems and logical frameworks, tools, and case studies. In addition, the
preface and introductory paper give valuable background information and a concise state-of-the-art
overview.

specification by example tools: Analysis and Visualization Tools for Constraint
Programming Pierre Deransart, M.V. Hermenegildo, J. Maluszynski, 2006-12-31 Coordinating

production across a supply chain, designing a new VLSI chip, allocating classrooms or scheduling
maintenance crews at an airport are just a few examples of complex (combinatorial) problems that
can be modeled as a set of decision variables whose values are subject to a set of constraints. The
decision variables may be the time when production of a particular lot will start or the plane that a
maintenance crew will be working on at a given time. Constraints may range from the number of
students you can ?t in a given classroom to the time it takes to transfer a lot from one plant to
another.Despiteadvancesincomputingpower,manyformsoftheseandother combinatorial problems
have continued to defy conventional programming approaches. Constraint Logic Programming (CLP)
?rst emerged in the mid-eighties as a programming technique with the potential of signi?cantly
reducing the time it takes to develop practical solutions to many of these problems, by combining
the expressiveness of languages such as Prolog with the compu- tional power of constrained search.
While the roots of CLP can be traced to Monash University in Australia, it is without any doubt in
Europe that this new software technology has gained the most prominence, bene?ting, among other
things, from sustained funding from both industry and public R&D programs over the past dozen
years. These investments have already paid 0?, resulting in a number of popular commercial
solutions as well as the creation of several successful European startups.

specification by example tools: Proceedings of The International Conference on eBusiness,
eCommerce, eManagement, eLearning and eGovernance 2014 Maaruf Ali, Mahdi H. Miraz, Kokula
Krishna Hari Kunasekaran, 2013-07-19 International Conference on eBusiness, eCommerce,
eManagement, eLearning and eGovernance 2014 University of Greenwich, London, England

specification by example tools: Writing Great Specifications Kamil Nicieja, 2017-10-25
Summary Writing Great Specifications is an example-rich tutorial that teaches you how to write good
Gherkin specification documents that take advantage of the benefits of specification by example.
Foreword written by Gojko Adzic. Purchase of the print book includes a free eBook in PDF, Kindle,
and ePub formats from Manning Publications. About the Technology The clearest way to
communicate a software specification is to provide examples of how it should work. Turning these
story-based descriptions into a well-organized dev plan is another matter. Gherkin is a
human-friendly, jargon-free language for documenting a suite of examples as an executable
specification. It fosters efficient collaboration between business and dev teams, and it's an excellent
foundation for the specification by example (SBE) process. About the Book Writing Great
Specifications teaches you how to capture executable software designs in Gherkin following the SBE
method. Written for both developers and non-technical team members, this practical book starts
with collecting individual feature stories and organizing them into a full, testable spec. You'll learn
to choose the best scenarios, write them in a way that anyone can understand, and ensure they can
be easily updated by anyone.management. What's Inside Reading and writing Gherkin Designing
story-based test cases Team Collaboration Managing a suite of Gherkin documents About the Reader
Primarily written for developers and architects, this book is accessible to any member of a software
design team. About the Author Kamil Nicieja is a seasoned engineer, architect, and project manager
with deep expertise in Gherkin and SBE. Table of contents Introduction to specification by example
and Gherkin PART 1 - WRITING EXECUTABLE SPECIFICATIONS WITH EXAMPLES The
specification layer and the automation layer Mastering the Given-When-Then template The basics of
scenario outlines Choosing examples for scenario outlines The life cycle of executable specifications
Living documentation PART 2 - MANAGING SPECIFICATION SUITES Organizing scenarios into a
specification suite Refactoring features into abilities and business needs Building a domain-driven
specification suite Managing large projects with bounded contexts

specification by example tools: Succeeding with Agile Mike Cohn, 2010 Proven, 100%
Practical Guidance for Making Scrum and Agile Work in Any Organization This is the definitive,
realistic, actionable guide to starting fast with Scrum and agile-and then succeeding over the long
haul. Leading agile consultant and practitioner Mike Cohn presents detailed recommendations,
powerful tips, and real-world case studies drawn from his unparalleled experience helping hundreds
of software organizations make Scrum and agile work. Succeeding with Agile is for pragmatic

software professionals who want real answers to the most difficult challenges they face in
implementing Scrum. Cohn covers every facet of the transition: getting started, helping individuals
transition to new roles, structuring teams, scaling up, working with a distributed team, and finally,
implementing effective metrics and continuous improvement. Throughout, Cohn presents Things to
Try Now sections based on his most successful advice. Complementary Objection sections reproduce
typical conversations with those resisting change and offer practical guidance for addressing their
concerns. Coverage includes Practical ways to get started immediately-and get good fast
Overcoming individual resistance to the changes Scrum requires Staffing Scrum projects and
building effective teams Establishing improvement communities of people who are passionate about
driving change Choosing which agile technical practices to use or experiment with Leading
self-organizing teams Making the most of Scrum sprints, planning, and quality techniques Scaling
Scrum to distributed, multiteam projects Using Scrum on projects with complex sequential
processes or challenging compliance and governance requirements Understanding Scrum's impact
on HR, facilities, and project management Whether you've completed a few sprints or multiple agile
projects and whatever your role-manager, developer, coach, ScrumMaster, product owner, analyst,
team lead, or project lead-this book will help you succeed with your very next project. Then, it will
help you go much further: It will help you transform your entire development organization.

specification by example tools: Semantic Web Services: Theory, Tools and Applications
Cardoso, Jorge, 2007-03-31 This book brings together researchers, scientists, and representatives
from different communities to study, understand, and explore the theory, tools, and applications of
the semantic Web. It joins the semantic Web, ontologies, knowledge management, Web services, and
Web processes into one fully comprehensive resource, serving as the platform for exchange of both
practical technologies and research--Provided by publisher.

specification by example tools: Field Device Tool - FDT Rene Simon, 2005 This book
describes the processes and technologies for embedding field devices, from the perspective of the
various automation applications and from the perspective of the devices, and reveals the similarities.
It provides a detailed explanation of the essential components and processes, such as instantiation,
commissioning and channel assignment. It also details the architecture concepts of DTMs for
communication connection devices and remote I/Os. An introduction to the FDT style guide
describes the interface between the end user programmer. This title is oriented equally towards
corporate decision-makers, developers industrial automation companies who provide devices and
systems, and system integrators. Readers will be able to gain an appreciation for the importance of
FDT technology for products, to initiate DTM developments and to integrate FDT-based components
into systems. This book is based upon Version 1.2 of the FDT specification and its addendum.

specification by example tools: Human-computer Interaction Jenny Preece, Laurie S. Keller,
1990 01 $aZie ook de Ou-cursus: Human-computer interaction. Zie ook de Ou-cursus:
Human-computer interaction.

specification by example tools: Agile Software Development - An Overview K Amuthabala,
Shantala Devi Patil, Thirumagal E, Thanuja K, 2023-10-05 This textbook has been meticulously
crafted with a singular purpose: offering a comprehensive and practical guide to Agile Software
Development. In the forthcoming chapters, we will delve into theintricacies of Agile methodologies,
explore their underlying principles, and investigate the compelling reasons behind their prominence
in the software development industry. Section I: Introduction to Iterative Development,
Evolutionary, and Adaptive Development, Our journeybegins with an exploration of fundamental
concepts: Iterative Development, Evolutionary Development,and Adaptive Development. These
approaches break free from conventional linear development processesand prioritize flexibility, risk
management, and client-driven planning. This chapter will discuss the meritsof time-boxed iterative
development, evolutionary requirements analysis, incremental delivery, and theultimate goal of
evolutionary delivery. Section II: Serves as a bridge between theory and practice within the Agile
realm. Here, we define AgileDevelopment, categorize various methodologies, and delve deep into the
Agile Manifesto and its guidingprinciples. Additionally, we explore Agile project management,

emphasizing the crucial role ofcommunication, feedback, and the human element. The chapter
culminates in an exploration of specificAgile methods and a balanced discussion of the ongoing
discourse surrounding Agile Hype. Section III: Motivation and Evidence, Understanding the
motivation underpinning Agile is fundamental toappreciating its significance. In Chapter 3, we
illuminate the imperatives for change in software projectsand how iterative development addresses
these challenges. We critique the limitations of the traditionalWaterfall model and provide a
comprehensive review of supporting evidence, including research findings,historical project data,
and expert opinions, all converging to fortify the case for iterative development. Section IV:
Fundamentals of DevOps and Technical View, Agile methodologies extend beyond
softwaredevelopment into the realm of DevOps. Chapter 4 introduces the foundational principles of
DevOps and itspivotal role in contemporary development practices. We delve into the building blocks
of DevOps, thevital metrics and measurement perspective, and the process view that fosters
seamless collaborationbetween development and operations teams. The section IV concludes with an
in-depth exploration of thetechnical facets, including topics like automatic releasing, infrastructure
as code, and specification byexample, enriched by real-world case studies. Upon completing this
textbook, you will comprehensively comprehend Agile Software Development andDevOps. Whether
you are a student embarking on a career in software development or an industryprofessional looking
to stay at the forefront of the field, the knowledge and insights provided here will equip you with the
tools to excel in the dynamic world of software development. Let us embark on this enlightening
journey together, embracing agility, adaptability, and excellence in software development.

specification by example tools: The Future of Software Quality Assurance Stephan
Goericke, 2019-11-19 This open access book, published to mark the 15th anniversary of the
International Software Quality Institute (iSQI), is intended to raise the profile of software testers and
their profession. It gathers contributions by respected software testing experts in order to highlight
the state of the art as well as future challenges and trends. In addition, it covers current and
emerging technologies like test automation, DevOps, and artificial intelligence methodologies used
for software testing, before taking a look into the future. The contributing authors answer questions
like: How is the profession of tester currently changing? What should testers be prepared for in the
years to come, and what skills will the next generation need? What opportunities are available for
further training today? What will testing look like in an agile world that is user-centered and
fast-paced? What tasks will remain for testers once the most important processes are automated?
iSQI has been focused on the education and certification of software testers for fifteen years now,
and in the process has contributed to improving the quality of software in many areas. The papers
gathered here clearly reflect the numerous ways in which software quality assurance can play a
critical role in various areas. Accordingly, the book will be of interest to both professional software
testers and managers working in software testing or software quality assurance.

Related to specification by example tools

SPECIFICATION Definition & Meaning - Merriam-Webster The meaning of SPECIFICATION is
the act or process of specifying. How to use specification in a sentence

Specification (technical standard) - Wikipedia Although specifications are usually issued by the
architect 's office, specification writing itself is undertaken by the architect and the various
engineers or by specialist specification writers

SPECIFICATION | English meaning - Cambridge Dictionary SPECIFICATION definition: 1. a
detailed description of how something should be done, made, etc.: 2. a detailed description. Learn
more

specification noun - Definition, pictures, pronunciation and usage Definition of specification
noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences,
grammar, usage notes, synonyms and more

Specification Definition & Meaning | Britannica Dictionary SPECIFICATION meaning: a
detailed description of work to be done or materials to be used in a project an instruction that says

exactly how to do or make something usually plural

Specification - definition of specification by The Free Dictionary specification (,spesifi'keifon)
n 1. the act or an instance of specifying

SPECIFICATION - Definition & Translations | Collins English Discover everything about the
word "SPECIFICATION" in English: meanings, translations, synonyms, pronunciations, examples,
and grammar insights - all in one comprehensive guide

specification - Dictionary of English the act of specifying:[uncountable] specification of charges
against the prisoner. Usually, specifications. [plural] a detailed description of requirements,
materials, etc., as in a plan for a

SPECIFICATION Definition & Meaning | Specification definition: the act of specifying.. See
examples of SPECIFICATION used in a sentence

What is a Specification? - Specright The purpose of a specification is to manage the development
process via detailed descriptions of the product design that represent the opinion of what a company
wants

SPECIFICATION Definition & Meaning - Merriam-Webster The meaning of SPECIFICATION is
the act or process of specifying. How to use specification in a sentence

Specification (technical standard) - Wikipedia Although specifications are usually issued by the
architect 's office, specification writing itself is undertaken by the architect and the various
engineers or by specialist specification writers

SPECIFICATION | English meaning - Cambridge Dictionary SPECIFICATION definition: 1. a
detailed description of how something should be done, made, etc.: 2. a detailed description. Learn
more

specification noun - Definition, pictures, pronunciation and usage Definition of specification
noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences,
grammar, usage notes, synonyms and more

Specification Definition & Meaning | Britannica Dictionary SPECIFICATION meaning: a
detailed description of work to be done or materials to be used in a project an instruction that says
exactly how to do or make something usually plural

Specification - definition of specification by The Free Dictionary specification (,spesifi'keifon)
n 1. the act or an instance of specifying

SPECIFICATION - Definition & Translations | Collins English Discover everything about the
word "SPECIFICATION" in English: meanings, translations, synonyms, pronunciations, examples,
and grammar insights - all in one comprehensive guide

specification - Dictionary of English the act of specifying:[uncountable] specification of charges
against the prisoner. Usually, specifications. [plural] a detailed description of requirements,
materials, etc., as in a plan for a

SPECIFICATION Definition & Meaning | Specification definition: the act of specifying.. See
examples of SPECIFICATION used in a sentence

What is a Specification? - Specright The purpose of a specification is to manage the development
process via detailed descriptions of the product design that represent the opinion of what a company
wants

Back to Home: https://explore.gcts.edu

https://explore.gcts.edu

