# bottom up trophic cascade

bottom up trophic cascade is a fundamental ecological concept describing how changes at the lowest levels of a food web influence higher trophic levels. This process highlights the role of primary producers, such as plants and algae, in shaping the structure and dynamics of entire ecosystems. Understanding bottom up trophic cascades is essential for grasping how nutrient availability, energy flow, and ecosystem productivity interact. This concept contrasts with top down trophic cascades, which emphasize predator effects on lower trophic levels. In this article, the mechanisms, examples, ecological significance, and implications for environmental management of bottom up trophic cascades will be explored in detail. The discussion will also cover how bottom up forces affect biodiversity and ecosystem stability. The following sections provide a comprehensive overview of this critical ecological phenomenon.

- Definition and Mechanisms of Bottom Up Trophic Cascade
- Ecological Examples of Bottom Up Trophic Cascades
- Impact on Ecosystem Structure and Function
- Differences Between Bottom Up and Top Down Cascades
- Applications in Environmental Management and Conservation

# Definition and Mechanisms of Bottom Up Trophic Cascade

The term bottom up trophic cascade refers to the process by which variations in the availability or productivity of primary producers influence higher trophic levels within an ecosystem. Primary producers, such as phytoplankton, algae, and terrestrial plants, form the base of food webs by converting inorganic nutrients and sunlight into organic matter. Changes in their abundance or biomass can ripple upward, affecting herbivores, predators, and even apex consumers. This cascading effect is driven primarily by resource availability, nutrient inputs, and environmental conditions that regulate primary production.

# Key Drivers of Bottom Up Cascades

Several factors contribute to the initiation and strength of bottom up trophic cascades. These include:

• Nutrient Availability: Increased nutrients, especially nitrogen and phosphorus, boost primary

productivity.

- **Light and Temperature:** These abiotic factors influence photosynthetic rates and growth of primary producers.
- Water Quality and Hydrology: Aquatic ecosystems depend heavily on water chemistry and flow patterns.
- Primary Producer Species Composition: Different species vary in nutritional quality and growth rates.

## Energy Flow and Trophic Levels

Energy flows upward through trophic levels starting from primary producers to herbivores and then to higher-level consumers. In a bottom up trophic cascade, the energy input at the base dictates the biomass and abundance at successive levels. For example, an increase in phytoplankton abundance can support larger populations of zooplankton, which in turn affects fish populations. Thus, the amount and quality of energy originating from primary producers are key to understanding ecosystem dynamics influenced by bottom up effects.

## Ecological Examples of Bottom Up Trophic Cascades

Numerous ecosystems worldwide demonstrate bottom up trophic cascades, where changes in basal resources lead to significant shifts in community structure. These examples illustrate the practical relevance of bottom up control in both aquatic and terrestrial environments.

#### Aquatic Ecosystems

In freshwater lakes and marine environments, nutrient enrichment often triggers bottom up cascades. Eutrophication caused by excess nitrogen and phosphorus input leads to algal blooms, which increase food availability for zooplankton. This surge can then support larger populations of small fish, subsequently influencing predatory fish abundance. However, excessive algal growth may also cause hypoxia, demonstrating complex outcomes of nutrient-driven cascades.

#### Terrestrial Ecosystems

In terrestrial habitats, variations in soil fertility and plant productivity directly affect herbivore populations such as insects and ungulates. For instance, in grassland ecosystems, increased nitrogen deposition enhances

plant biomass, which supports greater herbivore densities. This bottom up effect can subsequently alter predator populations that rely on these herbivores, demonstrating a clear trophic cascade initiated from the base.

#### Case Study: Arctic Tundra

In Arctic tundra ecosystems, the productivity of mosses and lichens governs the population dynamics of herbivores like caribou and small mammals. Changes in nutrient cycling and temperature affect plant growth, which cascades to influence herbivore abundance and predator-prey interactions. This example highlights how bottom up trophic cascades operate in nutrient-limited environments.

# Impact on Ecosystem Structure and Function

Bottom up trophic cascades substantially influence ecosystem composition, biodiversity, and function. By regulating primary production, these cascades determine the availability of resources and habitat conditions for various species, shaping community interactions and ecosystem processes.

#### Influence on Biodiversity

Enhanced primary productivity can increase species richness by providing more resources and niches. Conversely, nutrient enrichment can sometimes reduce diversity through dominance by a few fast-growing species. The balance between resource availability and competition is a critical aspect of how bottom up cascades affect biodiversity patterns.

# Effects on Nutrient Cycling and Energy Transfer

Bottom up cascades influence nutrient retention and recycling within ecosystems. High primary productivity promotes rapid nutrient uptake and organic matter accumulation, accelerating nutrient cycling. Additionally, efficient energy transfer from producers to consumers supports robust food web interactions and ecosystem resilience.

#### Role in Ecosystem Stability

Systems driven by strong bottom up control often exhibit stability through consistent energy input and nutrient supply. However, extreme fluctuations in resource availability can destabilize ecosystems, leading to population crashes or shifts in community structure. Understanding these dynamics is crucial for predicting ecosystem responses to environmental change.

# Differences Between Bottom Up and Top Down Cascades

While bottom up trophic cascades emphasize the influence of primary producers on higher trophic levels, top down cascades focus on the impact of predators regulating species below them. Both processes shape food web dynamics but operate through distinct mechanisms.

#### **Bottom Up Control**

Bottom up control arises when resource availability limits consumer populations. Changes in nutrient levels, light, or primary producer abundance trigger cascading effects upward through the food web. This control is often associated with resource-driven ecosystems where energy input is the main limiting factor.

## Top Down Control

Top down cascades occur when predators suppress herbivore populations, indirectly benefiting primary producers. Predator removal or addition can lead to significant changes in lower trophic levels. These cascades highlight the regulatory role of consumers in ecosystem structure.

## Interplay Between Bottom Up and Top Down Forces

In many ecosystems, bottom up and top down forces interact simultaneously, creating complex feedback loops. For example:

- Resource availability can influence predator abundance.
- Predation pressure can affect herbivore grazing on producers.
- Environmental changes may shift the dominance of bottom up or top down control.

Understanding the relative strength and interaction of these controls is vital for accurate ecological modeling and management.

# Applications in Environmental Management and Conservation

Insights into bottom up trophic cascades are instrumental in guiding ecosystem restoration, conservation, and resource management practices. Recognizing how nutrient inputs and primary production affect food webs helps predict outcomes of human interventions and natural changes.

#### Managing Nutrient Inputs

Controlling nutrient pollution in aquatic and terrestrial systems is critical to prevent harmful algal blooms and maintain balanced trophic interactions. Regulations on agricultural runoff and wastewater discharge aim to reduce excessive nutrient loading that can trigger disruptive bottom up cascades.

## Restoration of Degraded Ecosystems

Restoration projects often focus on reestablishing healthy primary producer communities to support entire food webs. Enhancing soil fertility or water quality can initiate positive bottom up cascades, promoting biodiversity recovery and ecosystem function.

#### Conservation of Keystone Primary Producers

Protecting key primary producers like seagrasses, corals, and mangroves safeguards the foundational energy source for many ecosystems. Their decline can lead to cascading negative effects throughout trophic levels, underscoring the importance of conserving these critical habitats.

#### Adaptive Management Strategies

Incorporating knowledge of bottom up trophic cascades allows for adaptive management approaches that anticipate ecosystem responses to environmental changes such as climate variability, habitat alteration, or species invasions. This proactive strategy supports sustainable ecosystem health and resilience.

# Frequently Asked Questions

## What is a bottom-up trophic cascade?

A bottom-up trophic cascade is an ecological process where changes at the lowest trophic levels, such as producers or primary consumers, influence the abundance and dynamics of organisms at higher trophic levels in the food chain.

# How does a bottom-up trophic cascade differ from a top-down trophic cascade?

A bottom-up trophic cascade starts with changes in the availability or productivity of primary producers affecting higher trophic levels, whereas a top-down trophic cascade begins with predators controlling the abundance of prey, which in turn affects lower trophic levels.

## What role do nutrients play in bottom-up trophic cascades?

Nutrients are critical in bottom-up trophic cascades because increased nutrient availability can enhance primary production, which then supports higher populations of herbivores and predators, influencing the entire food web.

#### Can bottom-up trophic cascades affect ecosystem stability?

Yes, bottom-up trophic cascades can affect ecosystem stability by regulating population sizes and interactions among species, potentially leading to more balanced and resilient ecosystems if nutrient inputs are natural and controlled.

# What are common examples of bottom-up trophic cascades in nature?

Common examples include increased nutrient runoff leading to algal blooms in aquatic systems that enhance food availability for herbivorous zooplankton, which then supports higher fish populations, or fertilization in terrestrial ecosystems boosting plant growth and subsequently herbivore and predator populations.

## How do bottom-up trophic cascades influence biodiversity?

Bottom-up trophic cascades can increase biodiversity by promoting resource availability that supports a wider variety of species at multiple trophic levels, but excessive nutrient input can lead to dominance by a few species and reduce overall diversity.

# Additional Resources

#### 1. Bottom-Up Trophic Cascades: Ecological Principles and Applications

This book explores the fundamental concepts behind bottom-up trophic cascades, focusing on how nutrient availability and primary production shape ecosystem dynamics. It delves into the mechanisms by which energy flows from producers to higher trophic levels and the cascading effects that result from changes at the base of the food web. Case studies from aquatic and terrestrial systems illustrate practical applications in conservation and resource management.

#### 2. Ecology of Nutrient-Driven Food Webs

Focusing on nutrient inputs as drivers of food web structure, this book examines how bottom-up forces regulate populations and community interactions. It integrates theoretical models with empirical data to demonstrate how nutrient enrichment can alter trophic cascades and ecosystem stability. The text is valuable for ecologists studying the balance between top-down and bottom-up controls in ecosystems.

#### 3. Plant-Herbivore Interactions and Bottom-Up Control

This volume investigates the role of plants in initiating bottom-up trophic cascades, emphasizing herbivore

responses to changes in plant quality and quantity. It covers the chemical and physical traits of plants that influence herbivore populations and the subsequent effects on predators. This interdisciplinary book bridges plant ecology, entomology, and trophic dynamics.

#### 4. Nutrient Enrichment and Aquatic Food Web Dynamics

Centered on freshwater and marine ecosystems, this book discusses how nutrient loading affects primary producers and triggers bottom-up cascades. It highlights the consequences for fish populations, algal blooms, and water quality. The author synthesizes experimental and long-term observational studies to provide a comprehensive picture of nutrient-driven trophic interactions.

#### 5. Bottom-Up vs. Top-Down Control in Ecosystems

This text contrasts the influences of bottom-up resource availability and top-down predation on ecosystem structure and function. It reviews empirical evidence from diverse habitats to illustrate when and how bottom-up cascades dominate ecological outcomes. The book is an essential resource for understanding the interplay between different trophic controls.

#### 6. Microbial Mediation of Bottom-Up Trophic Cascades

Exploring the often-overlooked role of microbes, this book details how microbial communities influence nutrient cycling and primary production. It explains how microbial processes can initiate or modulate bottom-up trophic cascades in soil and aquatic environments. The work is particularly relevant for researchers interested in ecosystem microbiology and biogeochemical feedbacks.

#### 7. Modeling Bottom-Up Effects in Food Webs

This book provides a comprehensive overview of mathematical and computational models that simulate bottom-up trophic cascades. It covers various modeling approaches, including network analysis and dynamic simulations, to predict how changes in resource levels impact higher trophic levels. Practitioners will find useful frameworks for studying ecosystem responses to environmental change.

#### 8. Bottom-Up Trophic Cascades in Terrestrial Ecosystems

Focusing on forests, grasslands, and deserts, this book examines how variations in soil nutrients and plant communities initiate trophic cascades. It discusses the implications for herbivore populations, predator-prey relationships, and biodiversity conservation. The text combines field studies and theoretical perspectives to illuminate terrestrial bottom-up processes.

#### 9. Human Impacts on Bottom-Up Trophic Cascades

This book addresses how anthropogenic activities such as agriculture, pollution, and land use change affect nutrient inputs and bottom-up cascades. It highlights the consequences for ecosystem health, resilience, and services. The author emphasizes management strategies to mitigate negative impacts and restore balanced trophic interactions.

## **Bottom Up Trophic Cascade**

Find other PDF articles:

 $\underline{https://explore.gcts.edu/textbooks-suggest-003/Book?trackid=bOU39-6751\&title=program-evaluatio} \\ \underline{n-textbooks.pdf}$ 

bottom up trophic cascade: Trophic Cascades John Terborgh, James A Estes, 2013-06-25 Trophic cascades—the top-down regulation of ecosystems by predators—are an essential aspect of ecosystem function and well-being. Trophic cascades are often drastically disrupted by human interventions—for example, when wolves and cougars are removed, allowing deer and beaver to become destructive—yet have only recently begun to be considered in the development of conservation and management strategies. Trophic Cascades is the first comprehensive presentation of the science on this subject. It brings together some of the world's leading scientists and researchers to explain the importance of large animals in regulating ecosystems, and to relate that scientific knowledge to practical conservation. Chapters examine trophic cascades across the world's major biomes, including intertidal habitats, coastal oceans, lakes, nearshore ecosystems, open oceans, tropical forests, boreal and temperate ecosystems, low arctic scrubland, savannas, and islands. Additional chapters consider aboveground/belowground linkages, predation and ecosystem processes, consumer control by megafauna and fire, and alternative states in ecosystems. An introductory chapter offers a concise overview of trophic cascades, while concluding chapters consider theoretical perspectives and comparative issues. Trophic Cascades provides a scientific basis and justification for the idea that large predators and top-down forcing must be considered in conservation strategies, alongside factors such as habitat preservation and invasive species. It is a groundbreaking work for scientists and managers involved with biodiversity conservation and protection.

bottom up trophic cascade: Trait-Mediated Indirect Interactions Takayuki Ohgushi, Oswald Schmitz, Robert D. Holt, 2012-12-06 There is increasing evidence that the structure and functioning of ecological communities and ecosystems are strongly influenced by flexible traits of individuals within species. A deep understanding of how trait flexibility alters direct and indirect species interactions is crucial for addressing key issues in basic and applied ecology. This book provides an integrated perspective on the ecological and evolutionary consequences of interactions mediated by flexible species traits across a wide range of systems. It is the first volume synthesizing the rapidly expanding research field of trait-mediated indirect effects and highlights how the conceptual framework of these effects can aid the understanding of evolutionary processes, population dynamics, community structure and stability, and ecosystem function. It not only brings out the importance of this emerging field for basic ecological questions, but also explores the implications of trait-mediated interactions for the conservation of biodiversity and the response of ecosystems to anthropogenic environmental changes.

bottom up trophic cascade: Ecology of Arctic Environments Sarah J. Woodin, Mick Marquiss, 1997-08 Leading ecologists discuss the issues currently affecting the Arctic's environment in this important review. Early chapters provide a background to the soils and periglacial processes of the Arctic, and to the role of microbial and plant communities in ecosystem function. The following chapters consider the relationship between individual arctic species and their environment, particularly in the context of climate, whilst a further chapter draws together terrestrial and aquatic ecosystems. The book concludes with chapters concentrating on man's impacts on the arctic environment.

**bottom up trophic cascade:** *Multitrophic Level Interactions* Teja Tscharntke, Bradford A. Hawkins, 2002-03-21 The multitrophic level approach to ecology addresses the complexity of food

webs much more realistically than the traditional focus on simple systems and interactions. Only in the last few decades have ecologists become interested in the nature of more complex systems including tritrophic interactions between plants, herbivores and natural enemies. Plants may directly influence the behaviour of their herbivores' natural enemies, ecological interactions between two species are often indirectly mediated by a third species, landscape structure directly affects local tritrophic interactions and below-ground food webs are vital to above-ground organisms. The relative importance of top-down effects (control by predators) and bottom-up effects (control by resources) must also be determined. These interactions are explored in this exciting volume by expert researchers from a variety of ecological fields. This book provides a much-needed synthesis of multitrophic level interactions and serves as a guide for future research for ecologists of all descriptions.

bottom up trophic cascade: Ecology Michael Begon, Colin R. Townsend, 2020-11-11 A definitive guide to the depth and breadth of the ecological sciences, revised and updated The revised and updated fifth edition of Ecology: From Individuals to Ecosystems - now in full colour - offers students and practitioners a review of the ecological sciences. The previous editions of this book earned the authors the prestigious 'Exceptional Life-time Achievement Award' of the British Ecological Society - the aim for the fifth edition is not only to maintain standards but indeed to enhance its coverage of Ecology. In the first edition, 34 years ago, it seemed acceptable for ecologists to hold a comfortable, objective, not to say aloof position, from which the ecological communities around us were simply material for which we sought a scientific understanding. Now, we must accept the immediacy of the many environmental problems that threaten us and the responsibility of ecologists to play their full part in addressing these problems. This fifth edition addresses this challenge, with several chapters devoted entirely to applied topics, and examples of how ecological principles have been applied to problems facing us highlighted throughout the remaining nineteen chapters. Nonetheless, the authors remain wedded to the belief that environmental action can only ever be as sound as the ecological principles on which it is based. Hence, while trying harder than ever to help improve preparedness for addressing the environmental problems of the years ahead, the book remains, in its essence, an exposition of the science of ecology. This new edition incorporates the results from more than a thousand recent studies into a fully up-to-date text. Written for students of ecology, researchers and practitioners, the fifth edition of Ecology: From Individuals to Ecosystems is an essential reference to all aspects of ecology and addresses environmental problems of the future.

**bottom up trophic cascade:** The Ecology of Seashores George A. Knox, 2000-12-21 The Ecology of Seashores explores the complex shore environment. It covers the ways in which representative species have adapted to life in a constantly changing environment in terms of their interactions, the control of community structure, and how energy and materials are cycled in different ecosystems. Written by an eminent marine biologist,

bottom up trophic cascade: Estuarine Ecology Byron C. Crump, Jeremy M. Testa, Kenneth H. Dunton, 2022-10-07 Estuarine Ecology A detailed and accessible exploration of the fundamentals and the latest advances in estuarine ecology In the newly revised third edition of Estuarine Ecology, a team of distinguished ecologists presents the current knowledge in estuarine ecology with particular emphasis on recent trends and advances. The book is accessible to undergraduate students while also providing a welcome summary of up-to-date content for a more advanced readership. This latest edition is optimized for classroom use, with a more intuitive mode of presentation that takes into account feedback from the previous edition's readers. Review questions and exercises have been added to assist in the learning and retention of complex concepts. Estuarine Ecology remains the gold standard for the discipline by taking stock of the manifold scientific breakthroughs made in the field since the last edition was written. It also offers: Thorough introductions to estuarine geomorphology, circulation, and chemistry In-depth treatments of estuarine primary and secondary production, including coastal marshes and mangrove wetlands A holistic view of estuarine ecosystems, their modeling and analysis, as well as the impact of human

activities and climate change A companion website with detailed answers to exercise questions Perfect for students of estuarine ecology, environmental science, fisheries science, oceanography, and natural resource management, Estuarine Ecology will also earn a place in the libraries of professionals, government employees, and consultants working on estuary and wetlands management and conservation.

Water Quality: The Lake Ringsjön Story Lars-Anders Hansson, Eva Bergman, 2013-11-11 This book tells a story of a large lake affected by agricultural and urban activities that have led to severe eutrophication problems with nuisance blue-green algal blooms. Although it is a case study of Lake Ringsjön (southern Sweden), the background, problems and measures are applicable to many lakes throughout the world. From a limnological point of view, the Lake Ringsjön story began more than 100 years ago, and during the last 20 years the sampling program has been intense, providing a unique data set on how a lake responds to human activities. However, the Lake Ringsjön story is not only a case study, but also a historical record of the development of ecological theory and its application. Hence, the lake has been subject both to an extensive nutrient reduction programme and a biomanipulation by means of fish reduction. Here we aim at combining the unique limnological data set with the eutrophication process, the nutrient reduction programme and the biomanipulation in order to apply our empirical knowledge to future lake management measures.

bottom up trophic cascade: Community Ecology Gary G. Mittelbach, Brian J. McGill, 2019-05-24 Community ecology has undergone a transformation in recent years, from a discipline largely focused on processes occurring within a local area to a discipline encompassing a much richer domain of study, including the linkages between communities separated in space (metacommunity dynamics), niche and neutral theory, the interplay between ecology and evolution (eco-evolutionary dynamics), and the influence of historical and regional processes in shaping patterns of biodiversity. To fully understand these new developments, however, students continue to need a strong foundation in the study of species interactions and how these interactions are assembled into food webs and other ecological networks. This new edition fulfils the book's original aims, both as a much-needed up-to-date and accessible introduction to modern community ecology, and in identifying the important questions that are yet to be answered. This research-driven textbook introduces state-of-the-art community ecology to a new generation of students, adopting reasoned and balanced perspectives on as-yet-unresolved issues. Community Ecology is suitable for advanced undergraduates, graduate students, and researchers seeking a broad, up-to-date coverage of ecological concepts at the community level.

**bottom up trophic cascade: Ecology** Robert E. Ricklefs, Gary Miller, 2000 See publisher description:

**bottom up trophic cascade: The Ecological World View** Charles Krebs, 2008-04-02 Filled with many examples of topic issues and current events, this book develops a basic understanding of how the natural world works and of how humans interact with the planet's natural ecosystems. It covers the history of ecology and describes the general approaches of the scientific method, then takes a look at basic principles of population dynamics and applies them to everyday practical problems.

**bottom up trophic cascade:** Extended Biocontrol Xavier Fauvergue, Adrien Rusch, Matthieu Barret, Marc Bardin, Emmanuelle Jacquin-Joly, Thibaut Malausa, Christian Lannou, 2022-06-07 This book presents an exhaustive overview of the theoretical foundations and practical applications of biocontrol in agriculture. It encompasses all kinds of nature-based approaches for crop protection: introduction and conservation of natural enemies, release of sterile insects, enhancement of plant defenses, use of microorganisms, biopesticides, and semiochemicals. Cutting-edge knowledge in population biology, microbial ecology, epidemiology and chemical ecology is presented in accessible terms. The potential of field application is discussed with regard to practical aspects but also socioeconomic constraints. The 62 authors are researchers from a large panel of disciplines, from theoretical biology to social sciences.

**bottom up trophic cascade:** Agroecosystems in a Changing Climate Paul C.D. Newton, R. Andrew Carran, Grant R. Edwards, Pascal A. Niklaus, 2006-09-01 Agroecosystems in a Changing Climate considers the consequences of changes in the atmosphere and climate on the integrity, stability, and productivity of agroecosystems. The book adopts a novel approach by bringing together theoretical contributions from ecologists and the applied interpretations of agriculturalists. Drawing these two approa

bottom up trophic cascade: Freshwater Ecology Walter K. Dodds, 2002-03-21 Freshwater Ecology: Concepts and Environmental Applications is a general text covering both basic and applied aspects of freshwater ecology and serves as an introduction to the study of lakes and streams. Issues of spatial and temporal scale, anthropogenic impacts, and application of current ecological concepts are covered along with ideas that are presented in more traditional limnological texts. Chapters on biodiversity, toxic chemicals, extreme and unusual habitats, and fisheries increase the breadth of material covered. The book includes an extensive glossary, questions for thought, worked examples of equations, and real-life problems. - Broad coverage of groundwaters, streams, wetlands, and lakes - Features basic scientific concepts and environmental applications throughout - Includes many figures, sidebars of fascinating applications, and biographies of practicing aquatic ecologists - Materials are presented to facilitate learning, including an extensive glossary, questions for thought, worked examples of equations, and real life problems - Written at a level understandable to most undergraduate students, with explanations of complex contemporary concepts in freshwater ecology described to promote understanding - Featuring small chapters that mainly stand alone, this book can be read in the order most suited to the specific application

bottom up trophic cascade: Community Ecology Herman A. Verhoef, Peter J. Morin, 2010 Community ecology is the study of the interactions between populations of co-existing species. Co-edited by two prominent community ecologists and featuring contributions from top researchers in the field, this book provides a survey of the state-of-the-art in both the theory and applications of the discipline. It pays special attention to topology, dynamics, and the importance of spatial and temporal scale while also looking at applications to emerging problems in human-dominated ecosystems (including the restoration and reconstruction of viable communities). Community Ecology: Processes, Models, and Applications adopts a mainly theoretical approach and focuses on the use of network-based theory, which remains little explored in standard community ecology textbooks. The book includes discussion of the effects of biotic invasions on natural communities; the linking of ecological network structure to empirically measured community properties and dynamics; the effects of evolution on community patterns and processes; and the integration of fundamental interactions into ecological networks. A final chapter indicates future research directions for the discipline.

bottom up trophic cascade: Oceanography and Marine Biology S. J. Hawkins, A. L. Allcock, A. E. Bates, L. B. Firth, I. P. Smith, S. Swearer, A. Evans, P. Todd, B. Russell, C. McQuaid, 2020-11-15 Oceanography and Marine Biology: An Annual Review remains one of the most cited sources in marine science and oceanography. The ever-increasing interest in work in oceanography and marine biology and its relevance to global environmental issues, especially global climate change and its impacts, creates a demand for authoritative refereed reviews summarizing and synthesizing the results of recent research. For more than 50 years, OMBAR has been an essential reference for research workers and students in all fields of marine science. If you are interested in submitting a review for consideration for publication in OMBAR, please email the Editor in Chief, Stephen Hawkins, at S.J.Hawkins@soton.ac.uk. This volume considers such diverse topics as optimal design for ecosystem-level ocean observatories, the oceanography and ecology of Ningaloo, human pressures and the emergence of novel marine ecosystems and priority species to support the functional integrity of coral reefs. Six of the nine peer-reviewed contributions in Volume 58 are available to read Open Access via the links on the Routledge.com webpage. An international Editorial Board ensures global relevance and expert peer review, with editors from Australia, Canada, Hong Kong, Ireland, Singapore, South Africa and the United Kingdom. The series volumes

find a place in the libraries of not only marine laboratories and oceanographic institutes, but also universities worldwide. Chapters 1, 2, 3, 4, 5, 7, and 8 of this book are freely available as downloadable Open Access PDFs at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.

bottom up trophic cascade: Carnivoran Ecology Steven W. Buskirk, 2023-04-17 These charismatic mammals, which include dogs, cats, hyenas, weasels, mongooses, seals, sea lions and bears, have always held special importance to humans throughout history and continue to do so today. In recent decades, the emergence of new technologies has completely transformed our knowledge of how carnivorans interact with their environments and consequently reshaped our view of carnivoran ecology. This unique synthesis uses examples from a diverse and expanding carnivoran literature, drawing from all carnivoran families and spanning the world's oceans and continents, to produce a clearly written and richly illustrated book that reviews our current state of knowledge of carnivoran ecology. It addresses all levels of biological organization and function, from genes to enzymes, organisms, populations, and ecosystems. Special attention is given to how carnivoran species interact with their prey, each other, and humans. There is an emphasis on community interactions and their importance in carnivoran evolution, showing how evolutionary constraints (morphological, physiological, and behavioral) structure communities today. The book's approach is strongly comparative, contrasting herbivores with carnivores, predators with scavengers, and cats with dogs. Carnivorans play important roles in many high-profile conservation cases, either as species of concern or agents of endangerment, and their importance is demonstrated in both contexts. Carnivoran Ecology is an accessible advanced textbook aimed principally at senior undergraduate and graduate students taking courses in carnivore ecology, as well as a broad audience of professional academics (especially carnivore and mammalian biologists), researchers, and practitioners working in both governmental and non-governmental organizations. A significant secondary market will exist amongst the large amateur naturalist community including those wishing to explore the ecological and evolutionary links between domestic carnivorans (dogs, cats, ferrets etc.) and their wild counterparts.

**bottom up trophic cascade: The Biology of Lakes and Ponds** Christer Brönmark, Lars-Anders Hansson, 2018 This concise yet comprehensive introduction to the biology of standing waters (lakes and ponds) combines traditional limnology with current ecological and evolutionary theory. 'The Biology of Lakes and Ponds', now in its second edition, should be a useful text for university tuition.

**bottom up trophic cascade:** <u>Defensive Mutualism in Microbial Symbiosis</u> James F. White Jr., Monica S. Torres, 2009-05-26 Anemones and fish, ants and acacia trees, fungus and trees, buffaloes and oxpeckers--each of these unlikely duos is an inimitable partnership in which the species' coexistence is mutually beneficial. More specifically, they represent examples of defensive mutualism, when one species receives protection against predators or parasites in exchange for

bottom up trophic cascade: The Diversity of Fishes Douglas E. Facey, Brian W. Bowen, Bruce B. Collette, Gene S. Helfman, 2022-11-15 THE DIVERSITY OF FISHES The third edition of The Diversity of Fishes is a major revision of the widely adopted ichthyology textbook, incorporating the latest advances in the biology of fishes and covering taxonomy, anatomy, physiology, biogeography, ecology, and behavior. Key information on the evolution of various fishes is also presented, providing expansive and conclusive coverage on all key topics pertaining to the field. To aid in reader comprehension, each chapter begins with a summary that provides a broad overview of the content of that chapter, which may be particularly useful for those using the text for a course who don't intend to address every chapter in detail. Detailed color photographs throughout the book demonstrate just some of the diversity and beauty of fishes that attract many to the field. A companion website provides related videos selected by the authors, instructor resources, and additional references and websites for further reading. Sample topics covered and learning resources included in The Diversity of Fishes are as follows: How molecular genetics has transformed many aspects of ichthyology The close relationship between structure and function,

including adaptations to special environments Many physical and behavioral adaptations reflecting the fact that many fishes are both predators and prey Fish interactions with other species within fish assemblages and broader communities, plus their impacts on ecosystems Global maps that more accurately represent the comparative sizes of oceans and land masses than maps used in prior editions For students, instructors, and individuals with an interest in ichthyology, The Diversity of Fishes is an all-in-one introductory resource to the field, presenting vast opportunities for learning, many additional resources to aid in information retention, and helpful recommendations on where to go to explore specific topics further.

#### Related to bottom up trophic cascade

**bottom left? left bottom???** | **WordReference Forums** OK in that case you should say 'the picture on the bottom left' It is 'bottom left' with no preposition if you put it in brackets within an article to refer to a picture

**on, at, in the bottom - WordReference Forums** Yes, you seem to have it quite right. 'On the bottom of' something like a boat, 'at the bottom of' an up-and-down thing like a list, a page; and I can't think of how you'd use 'in

On the bottom vs. at the bottom [of a page] | WordReference Forums "At the bottom of the page" is the usual expression for something appearing near the bottom edge of a page. "On the bottom" would be appropriate if there were something

**at/in the bottom of the sea - WordReference Forums** Hi! What is the difference between in/at the bottom. for instance at the bottom of the sea or in the bottom of the sea? Both are they possible? Thanks in advance!

**right-hand corner and right corner - WordReference Forums** Right in "--- in the bottom right ----" is a noun. I would hesitate to say that right -hand corner and right corner are always interchangeable because, in terms of semantics, when

**you are nothing but a bottom-feeder | WordReference Forums** A 'a bottom-feeder' is a fish that finds food on the sea bed or at the bottom of a lake, and metaphorically someone, like this journalist, who writes about the worst or most

**backside/bottom - WordReference Forums** However, "bottom" is definitely more polite than "backside" and is acceptable for ordinary conversation. "Buttocks" is a bit more sophisticated and is more suited to medical,

**At/on/in/ the bottom of the fridge - WordReference Forums** Is on used? I've never heard anyone say that. I think most people would say the fridge has a freezer underneath. In the bottom of the fridge is straightforward – of course in

**Bum / Butt / Buttocks / Bottom - WordReference Forums** For AE, butt is common, idiomatic, and lower register than buttocks, bottom, or posterior. The last is little used, sounds old fashioned and stuffy. Backside is also colloquial

**bottom left? left bottom???** | **WordReference Forums** OK in that case you should say 'the picture on the bottom left' It is 'bottom left' with no preposition if you put it in brackets within an article to refer to a picture

**on, at, in the bottom - WordReference Forums** Yes, you seem to have it quite right. 'On the bottom of' something like a boat, 'at the bottom of' an up-and-down thing like a list, a page; and I can't think of how you'd use 'in

**On the bottom vs. at the bottom [of a page] | WordReference Forums** "At the bottom of the page" is the usual expression for something appearing near the bottom edge of a page. "On the bottom" would be appropriate if there were something

**at/in the bottom of the sea - WordReference Forums** Hi! What is the difference between in/at the bottom. for instance at the bottom of the sea or in the bottom of the sea? Both are they possible?

Thanks in advance!

**right-hand corner and right corner - WordReference Forums** Right in "--- in the bottom right ---" is a noun. I would hesitate to say that right -hand corner and right corner are always interchangeable because, in terms of semantics, when

you are nothing but a bottom-feeder | WordReference Forums A 'a bottom-feeder' is a fish that finds food on the sea bed or at the bottom of a lake, and metaphorically someone, like this journalist, who writes about the worst or most

**backside/bottom - WordReference Forums** However, "bottom" is definitely more polite than "backside" and is acceptable for ordinary conversation. "Buttocks" is a bit more sophisticated and is more suited to medical,

**At/on/in/ the bottom of the fridge - WordReference Forums** Is on used? I've never heard anyone say that. I think most people would say the fridge has a freezer underneath. In the bottom of the fridge is straightforward – of course in

**Bum / Butt / Buttocks / Bottom - WordReference Forums** For AE, butt is common, idiomatic, and lower register than buttocks, bottom, or posterior. The last is little used, sounds old fashioned and stuffy. Backside is also colloquial

**bottom left? left bottom??? | WordReference Forums** OK in that case you should say 'the picture on the bottom left' It is 'bottom left' with no preposition if you put it in brackets within an article to refer to a picture

**on, at, in the bottom - WordReference Forums** Yes, you seem to have it quite right. 'On the bottom of' something like a boat, 'at the bottom of' an up-and-down thing like a list, a page; and I can't think of how you'd use 'in the

**On the bottom vs. at the bottom [of a page] | WordReference** "At the bottom of the page" is the usual expression for something appearing near the bottom edge of a page. "On the bottom" would be appropriate if there were something

**at/in the bottom of the sea - WordReference Forums** Hi! What is the difference between in/at the bottom. for instance at the bottom of the sea or in the bottom of the sea? Both are they possible? Thanks in advance!

**right-hand corner and right corner - WordReference Forums** Right in "--- in the bottom right ----" is a noun. I would hesitate to say that right -hand corner and right corner are always interchangeable because, in terms of semantics, when

you are nothing but a bottom-feeder | WordReference Forums A 'a bottom-feeder' is a fish that finds food on the sea bed or at the bottom of a lake, and metaphorically someone, like this journalist, who writes about the worst or most

**backside/bottom - WordReference Forums** However, "bottom" is definitely more polite than "backside" and is acceptable for ordinary conversation. "Buttocks" is a bit more sophisticated and is more suited to medical,

**At/on/in/ the bottom of the fridge - WordReference Forums** Is on used? I've never heard anyone say that. I think most people would say the fridge has a freezer underneath. In the bottom of the fridge is straightforward – of course in

**Bum / Butt / Buttocks / Bottom - WordReference Forums** For AE, butt is common, idiomatic, and lower register than buttocks, bottom, or posterior. The last is little used, sounds old fashioned and stuffy. Backside is also colloquial

**bottom left? left bottom??? | WordReference Forums** OK in that case you should say 'the picture on the bottom left' It is 'bottom left' with no preposition if you put it in brackets within an

article to refer to a picture

**on, at, in the bottom - WordReference Forums** Yes, you seem to have it quite right. 'On the bottom of' something like a boat, 'at the bottom of' an up-and-down thing like a list, a page; and I can't think of how you'd use 'in the

**On the bottom vs. at the bottom [of a page] | WordReference** "At the bottom of the page" is the usual expression for something appearing near the bottom edge of a page. "On the bottom" would be appropriate if there were something

**at/in the bottom of the sea - WordReference Forums** Hi! What is the difference between in/at the bottom. for instance at the bottom of the sea or in the bottom of the sea? Both are they possible? Thanks in advance!

**right-hand corner and right corner - WordReference Forums** Right in "--- in the bottom right ----" is a noun. I would hesitate to say that right -hand corner and right corner are always interchangeable because, in terms of semantics, when

you are nothing but a bottom-feeder | WordReference Forums A 'a bottom-feeder' is a fish that finds food on the sea bed or at the bottom of a lake, and metaphorically someone, like this journalist, who writes about the worst or most

**backside/bottom - WordReference Forums** However, "bottom" is definitely more polite than "backside" and is acceptable for ordinary conversation. "Buttocks" is a bit more sophisticated and is more suited to medical,

**At/on/in/ the bottom of the fridge - WordReference Forums** Is on used? I've never heard anyone say that. I think most people would say the fridge has a freezer underneath. In the bottom of the fridge is straightforward – of course in

**Bum / Butt / Buttocks / Bottom - WordReference Forums** For AE, butt is common, idiomatic, and lower register than buttocks, bottom, or posterior. The last is little used, sounds old fashioned and stuffy. Backside is also colloquial

**bottom left? left bottom???** | **WordReference Forums** OK in that case you should say 'the picture on the bottom left' It is 'bottom left' with no preposition if you put it in brackets within an article to refer to a picture

**on, at, in the bottom - WordReference Forums** Yes, you seem to have it quite right. 'On the bottom of' something like a boat, 'at the bottom of' an up-and-down thing like a list, a page; and I can't think of how you'd use 'in the

On the bottom vs. at the bottom [of a page] | WordReference "At the bottom of the page" is the usual expression for something appearing near the bottom edge of a page. "On the bottom" would be appropriate if there were something

**at/in the bottom of the sea - WordReference Forums** Hi! What is the difference between in/at the bottom. for instance at the bottom of the sea or in the bottom of the sea? Both are they possible? Thanks in advance!

**right-hand corner and right corner - WordReference Forums** Right in "--- in the bottom right ----" is a noun. I would hesitate to say that right -hand corner and right corner are always interchangeable because, in terms of semantics, when

you are nothing but a bottom-feeder | WordReference Forums A 'a bottom-feeder' is a fish that finds food on the sea bed or at the bottom of a lake, and metaphorically someone, like this journalist, who writes about the worst or most

**backside/bottom - WordReference Forums** However, "bottom" is definitely more polite than "backside" and is acceptable for ordinary conversation. "Buttocks" is a bit more sophisticated and is

more suited to medical,

**At/on/in/ the bottom of the fridge - WordReference Forums** Is on used? I've never heard anyone say that. I think most people would say the fridge has a freezer underneath. In the bottom of the fridge is straightforward – of course in

**Bum / Butt / Buttocks / Bottom - WordReference Forums** For AE, butt is common, idiomatic, and lower register than buttocks, bottom, or posterior. The last is little used, sounds old fashioned and stuffy. Backside is also colloquial

**bottom left? left bottom???** | **WordReference Forums** OK in that case you should say 'the picture on the bottom left' It is 'bottom left' with no preposition if you put it in brackets within an article to refer to a picture

**on, at, in the bottom - WordReference Forums** Yes, you seem to have it quite right. 'On the bottom of' something like a boat, 'at the bottom of' an up-and-down thing like a list, a page; and I can't think of how you'd use 'in

On the bottom vs. at the bottom [of a page] | WordReference Forums "At the bottom of the page" is the usual expression for something appearing near the bottom edge of a page. "On the bottom" would be appropriate if there were something

**at/in the bottom of the sea - WordReference Forums** Hi! What is the difference between in/at the bottom. for instance at the bottom of the sea or in the bottom of the sea? Both are they possible? Thanks in advance!

**right-hand corner and right corner - WordReference Forums** Right in "--- in the bottom right ----" is a noun. I would hesitate to say that right -hand corner and right corner are always interchangeable because, in terms of semantics, when

at the foot of the hill(s)/mountain(s), at the bottom of the hill(s If the question is about various languages: In Hebrew the expression is  $\square\square\square\square\square\square\square\square\square$ , where the relevant word  $\square\square\square\square\square\square\square$  is based on  $\square\square\square$  = foot, and is plural, so we have at the

you are nothing but a bottom-feeder | WordReference Forums A 'a bottom-feeder' is a fish that finds food on the sea bed or at the bottom of a lake, and metaphorically someone, like this journalist, who writes about the worst or most

**backside/bottom - WordReference Forums** However, "bottom" is definitely more polite than "backside" and is acceptable for ordinary conversation. "Buttocks" is a bit more sophisticated and is more suited to medical,

**At/on/in/ the bottom of the fridge - WordReference Forums** Is on used? I've never heard anyone say that. I think most people would say the fridge has a freezer underneath. In the bottom of the fridge is straightforward - of course in

**Bum / Butt / Buttocks / Bottom - WordReference Forums** For AE, butt is common, idiomatic, and lower register than buttocks, bottom, or posterior. The last is little used, sounds old fashioned and stuffy. Backside is also colloquial

#### Related to bottom up trophic cascade

**Of wolves, elk and willows: how predation structures ecosystems** (esa.org7mon) Purpose: To introduce the idea of indirect effects of predator on prey by changing prey behavior, and of trophic cascades - effects of predators on primary producers; to construct a flow diagram of

**Of wolves, elk and willows: how predation structures ecosystems** (esa.org7mon) Purpose: To introduce the idea of indirect effects of predator on prey by changing prey behavior, and of trophic cascades - effects of predators on primary producers; to construct a flow diagram of

Transient top-down and bottom-up effects of resources pulsed to multiple trophic levels (JSTOR Daily1y) Pulsed fluxes of organisms across ecosystem boundaries can exert top-down and bottom-up effects in recipient food webs, through both direct effects on the subsidized trophic levels and indirect

Transient top-down and bottom-up effects of resources pulsed to multiple trophic levels (JSTOR Daily1y) Pulsed fluxes of organisms across ecosystem boundaries can exert top-down and

bottom-up effects in recipient food webs, through both direct effects on the subsidized trophic levels and indirect

**Having lots of spiders around is a good sign | ECOVIEWS** (10dOpinion) Spiders, snakes and centipedes are bellwethers of a healthy environment. The presence of numerous spiderwebs is an encouraging sign, because an alarming phenomenon is being reported in several

**Having lots of spiders around is a good sign | ECOVIEWS** (10dOpinion) Spiders, snakes and centipedes are bellwethers of a healthy environment. The presence of numerous spiderwebs is an encouraging sign, because an alarming phenomenon is being reported in several

Yellowstone research reignites debate over wolf-generated trophic cascade (Bozeman Daily Chronicle1y) Get any of our free daily email newsletters — news headlines, opinion, e-edition, obituaries and more. The theory was exciting and quickly grabbed headlines. Fifteen years after wolves were

Yellowstone research reignites debate over wolf-generated trophic cascade (Bozeman Daily Chronicle1y) Get any of our free daily email newsletters — news headlines, opinion, e-edition, obituaries and more. The theory was exciting and quickly grabbed headlines. Fifteen years after wolves were

Reintroduced Wolves Caused A "Trophic Cascade", Transforming Yellowstone's Ecosystems (Hosted on MSN7mon) New research has demonstrated the powerful impacts the reintroduction of predators can have on an ecosystem. The presence of wolves in Yellowstone National Park has driven a cascading effect that has

Reintroduced Wolves Caused A "Trophic Cascade", Transforming Yellowstone's Ecosystems (Hosted on MSN7mon) New research has demonstrated the powerful impacts the reintroduction of predators can have on an ecosystem. The presence of wolves in Yellowstone National Park has driven a cascading effect that has

**Spatial Refuge from Intraguild Predation: Implications for Prey Suppression and Trophic Cascades** (JSTOR Daily10mon) The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple

**Spatial Refuge from Intraguild Predation: Implications for Prey Suppression and Trophic Cascades** (JSTOR Daily10mon) The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple

Restoring predators, restoring ecosystems: Yellowstone wolves and other carnivores drive strong trophic cascade (EurekAlert!7mon) Corvallis, OR — February 6, 2025 — A new study reveals the profound ecological effects of wolves and other large carnivores in Yellowstone National Park, showcasing the cascading effects predators can

Restoring predators, restoring ecosystems: Yellowstone wolves and other carnivores drive strong trophic cascade (EurekAlert!7mon) Corvallis, OR — February 6, 2025 — A new study reveals the profound ecological effects of wolves and other large carnivores in Yellowstone National Park, showcasing the cascading effects predators can

Do wolves fix ecosystems? CSU study debunks claims about Yellowstone reintroduction (Fort Collins Coloradoan1y) The commonly held claim that wolves reintroduced into Yellowstone National Park in the mid-1990s spearheaded a "trophic cascade" of ecological restoration, as some studies indicated, is unfounded,

**Do wolves fix ecosystems? CSU study debunks claims about Yellowstone reintroduction** (Fort Collins Coloradoan1y) The commonly held claim that wolves reintroduced into Yellowstone National Park in the mid-1990s spearheaded a "trophic cascade" of ecological restoration, as some studies indicated, is unfounded,

Yellowstone research reignites debate over wolf-generated trophic cascade (Billings Gazette1y) The theory was exciting and quickly grabbed headlines. Fifteen years after wolves were reintroduced to Yellowstone National Park in 1995, some scientists pointed to the resurgence of

aspen growth, an

Yellowstone research reignites debate over wolf-generated trophic cascade (Billings Gazette1y) The theory was exciting and quickly grabbed headlines. Fifteen years after wolves were reintroduced to Yellowstone National Park in 1995, some scientists pointed to the resurgence of aspen growth, an

Back to Home: <a href="https://explore.gcts.edu">https://explore.gcts.edu</a>