range in algebra definition

range in algebra definition is a fundamental concept that plays a crucial role in understanding functions and their properties. In algebra, the range refers to the set of output values that a function can produce, given its input values. This article will explore the definition of range in algebra, how it can be determined, the importance of range in various mathematical contexts, and its applications in real-world scenarios. Additionally, we will delve into related concepts such as domain and function types, providing a comprehensive understanding of how range fits into the broader landscape of algebraic studies.

- Understanding the Definition of Range
- How to Determine the Range of a Function
- Importance of Range in Algebra
- Real-World Applications of Range
- Related Concepts: Domain and Function Types

Understanding the Definition of Range

The definition of range in algebra pertains to the set of all possible output values of a function. When a function processes an input, it produces an output based on a specific rule or relationship defined within that function. The collection of all possible outputs forms the range, which is often represented in interval notation or set notation. Understanding the range is crucial for analyzing functions since it tells us the values that the function can actually take.

Basic Examples of Range

To illustrate the concept of range, consider the following examples:

- For the function $f(x) = x^2$, the input can be any real number, but the output (range) will only be non-negative real numbers, i.e., $[0, \infty)$.
- For the function $g(x) = \sin(x)$, the output values oscillate between -1 and 1, so the range is [-1, 1].

These examples highlight how the output values can be restricted by the nature of the function

itself. Understanding these examples helps students and learners grasp the concept more effectively.

How to Determine the Range of a Function

Determining the range of a function can be approached in various ways, depending on the type of function being analyzed. Here are several methods to find the range:

Graphical Method

One of the most intuitive ways to determine the range is through graphing the function. By plotting the function on a coordinate plane, one can visually inspect the y-values (outputs) achieved by the function:

- Identify the lowest and highest points on the graph.
- Observe if the graph continues infinitely in any direction.

This method is particularly effective for polynomial, rational, and trigonometric functions.

Algebraic Method

Another method involves algebraic manipulation. For instance, if you are given a function, you can set the function equal to a variable (let's say y) and solve for x:

- Rearrange the function to isolate y.
- Identify any restrictions on y based on the equation.

This method works well for rational functions where certain values of y may not be attainable due to vertical asymptotes or other restrictions.

Using Calculus

For more complex functions, calculus may be necessary to determine the range. By finding the derivative of a function, you can determine critical points and analyze the behavior of the function:

- Find the first derivative and set it to zero to locate critical points.
- Use the second derivative test to determine concavity and local maxima or minima.

This mathematical approach allows for a more precise determination of the range, especially for continuous functions.

Importance of Range in Algebra

The range of a function holds significant importance in various mathematical disciplines. Understanding the range allows mathematicians and students to:

- Analyze the behavior of functions in calculus.
- Make predictions in statistical models and data analysis.
- Understand constraints in optimization problems.

Additionally, range is crucial for solving equations and inequalities, as it provides insight into which solutions are valid within a given context.

Real-World Applications of Range

The concept of range extends beyond pure mathematics and finds applications in many real-world scenarios. Some notable examples include:

- In economics, understanding the range of possible outcomes can help in predicting market behaviors.
- In statistics, the range of a data set provides insight into variability and dispersion.
- In engineering, the range of values can determine the limits of safety and performance parameters.

These applications illustrate how the range is not merely a theoretical concept but a practical tool used across various disciplines.

Related Concepts: Domain and Function Types

To fully appreciate the concept of range, it is essential to understand related concepts such as domain and different types of functions. The domain refers to the set of all possible input values for a function, while the range encompasses the output values. Together, they define the behavior of functions:

Domain

The domain can significantly influence the range. For example, if a function is defined only for positive integers, the range will be limited to the outputs corresponding to that domain.

Types of Functions

Different types of functions exhibit unique characteristics that affect their ranges:

- Linear functions have a range of all real numbers.
- Quadratic functions typically have a range that is limited to non-negative numbers.
- Trigonometric functions have ranges that are periodic and confined to specific intervals.

Understanding these variations is essential for accurately determining the range of a function in different contexts.

In summary, the concept of range in algebra is a pivotal element in the study of functions. It provides valuable insights into the behavior of mathematical relationships and has practical applications across various fields. By grasping the definition, methods of determination, and associated concepts, learners can develop a deeper understanding of algebra and its relevance in the real world.

Q: What is the range of a function?

A: The range of a function is the set of all possible output values that a function can produce based on its input values. It represents the y-values that the function can take.

Q: How do you find the range of a quadratic function?

A: To find the range of a quadratic function, you can analyze its vertex and direction (opening

upwards or downwards). The range will be from the y-coordinate of the vertex to positive or negative infinity, depending on the orientation of the parabola.

Q: Can the range of a function be empty?

A: No, the range of a function cannot be empty because every function must have at least one output value for its corresponding input values. However, some functions may have limited ranges.

Q: How does the domain affect the range of a function?

A: The domain directly affects the range because the input values (domain) determine what output values (range) the function can achieve. If the domain is restricted, the range will also be limited accordingly.

Q: What are the differences between range and domain?

A: The domain refers to the set of all possible input values for a function, while the range refers to the set of all possible output values. Together, they define the complete behavior of the function.

Q: How do you express the range in interval notation?

A: The range can be expressed in interval notation by using brackets and parentheses to indicate whether endpoints are included or excluded. For example, the range $[0, \infty)$ includes 0 but extends infinitely upward.

Q: Why is understanding the range important in statistics?

A: Understanding the range in statistics is important because it provides insights into the variability and spread of data. It helps identify outliers and assess the overall distribution of data points.

Q: Can a function have the same output for different inputs?

A: Yes, a function can have the same output for different inputs. This is known as a many-to-one relationship, which is common in functions like quadratic or trigonometric functions.

Q: How is the range of a trigonometric function defined?

A: The range of a trigonometric function, such as sine or cosine, is defined by the maximum and minimum values it can achieve. For example, the range of sin(x) is [-1, 1].

Q: Are there functions with unbounded ranges?

A: Yes, some functions have unbounded ranges, meaning they can take on infinitely large or small values. For example, the range of the function f(x) = x is all real numbers, which is unbounded.

Range In Algebra Definition

Find other PDF articles:

 $\frac{https://explore.gcts.edu/business-suggest-015/pdf?trackid=aGR99-2404\&title=franchise-business-on-sale.pdf}{}$

range in algebra definition: On Range Space Techniques, Convex Cones, Polyhedra and Optimization in Infinite Dimensions Paolo d'Alessandro, 2025-09-12 This book is a research monograph with specialized mathematical preliminaries. It presents an original range space and conic theory of infinite dimensional polyhedra (closed convex sets) and optimization over polyhedra in separable Hilbert spaces, providing, in infinite dimensions, a continuation of the author's book: A Conical Approach to Linear Programming, Scalar and Vector Optimization Problems, Gordon and Breach Science Publishers, Amsterdam, 1997. It expands and improves author's new approach to the Maximum Priciple for norm oprimal control of PDE, based on theory of convex cones, providing shaper results in various Hilbert space and Banach space settings. It provides a theory for convex hypersurfaces in Its and Hilbert spaces. For these purposes, it introduces new results and concepts, like the generalizations to the non compact case of cone capping and of the Krein Milman Theorem, an extended theory of closure of pointed cones, the notion of beacon points, and a necessary and sufficient condition of support for void interior closed convex set (complementing the Bishop Phelps Theorem), based on a new decomposition of non closed non pointed cones with non closed lineality space.

range in algebra definition: Topics in Mathematical Physics, General Relativity, and Cosmology in Honor of Jerzy Pleba?ski Hugo Garcia-Compe n, Bogdan Mielnik, Merced Montesinos, 2006 One of modern science's most famous and controversial figures, Jerzy Plebanski was an outstanding theoretical physicist and an author of many intriguing discoveries in general relativity and quantum theory. Known for his exceptional analytic talents, explosive character, inexhaustible energy, and bohemian nights with brandy, coffee, and enormous amounts of cigarettes, he was dedicated to both science and art, producing innumerable handwritten articles resembling monk's calligraphy - as well as a collection of oil paintings. As a collaborator but also an antagonist of Leopold Infeld's (a coauthor of Albert Einstein's), Plebanski is recognized for designing the heavenly and hyper-heavenly equations, for introducing new variables to describe the gravitational field, for the exact solutions in Einstein's gravity and in quantum theory, for his classification of the tensor of matter, for some outstanding results in nonlinear electrodynamics, and for analyzing general relativity with continuous sources long before Chandrasekhar et al. A tribute to Plebaski's contributions and the variety of his interests, this is a unique and wide-ranging collection of invited papers, covering gravity quantization, strings, branes, supersymmetry, ideas on the deformation quantization, and lesser known results on the continuous Baker-Campbell-Hausdorff problem.

range in algebra definition: Advanced Algebra with the TI-89 Brendan Kelly, 2000 range in algebra definition: Integrated Algebra on the Ti-73 Kathleen Noftsier, 2011-03-03

Integrated Algebra on the TI-73 presents a graphing calculator workbook with exercises designed to be completed with the TI-73 graphing calculator. Many can also be completed with the TI-83+/TI-84+ graphing calculator. Intended to serve as a guide for students preparing for the New York State Integrated Algebra Regents Exam, this textbook also gives alternate strategies for solving math problems that you already learned how to solve or calculate in integrated algebra class; provides extra practice on regents-type questions; demonstrates how to work around quirks in the programming of the calculator; teaches developing skills needed for the Geometry and Algebra 2/Trigonometry exams, as well as college calculus and statistics courses. Some of topics covered go beyond the scope of the Integrated Algebra exam in order to accommodate use as a text as a mathematics elective. These can be omitted if the workbook is used as a supplement to a course leading to the Integrated Algebra regents. Prepare for the exam, learn your graphing calculator more thoroughly, and improve your knowledge of integrated algebra with Integrated Algebra on the TI-73.

range in algebra definition: Helping Students Understand Algebra, Grades 7 - 8 Sandall, 2008-08-28 Facilitate a smooth transition from arithmetic to algebra for students in grades 7 and up using Helping Students Understand Algebra. This 128-page book includes step-by-step instructions with examples, practice problems using the concepts, real-life applications, a list of symbols and terms, tips, and answer keys. The book supports NCTM standards and includes chapters on topics such as number systems, properties of numbers, exponents and expressions, roots and radicals, algebraic expressions, graphing, and functions.

range in algebra definition: Algebra, \$K\$-Theory, Groups, and Education Hyman Bass, Tsit-Yuen Lam, Andy R. Magid, 1999 This volume includes expositions of key developments over the past four decades in commutative and non-commutative algebra, algebraic \$K\$-theory, infinite group theory, and applications of algebra to topology. Many of the articles are based on lectures given at a conference at Columbia University honoring the 65th birthday of Hyman Bass. Important topics related to Bass's mathematical interests are surveyed by leading experts in the field. Of particular note is a professional autobiography of Professor Bass, and an article by Deborah Ball on mathematical education. The range of subjects covered in the book offers a convenient single source for topics in the field.

range in algebra definition: *Mathematical Challenges of Zero-Range Physics* Alessandro Michelangeli, 2021-02-04 Since long over the decades there has been a large transversal community of mathematicians grappling with the sophisticated challenges of the rigorous modelling and the spectral and scattering analysis of quantum systems of particles subject to an interaction so much localised to be considered with zero range. Such a community is experiencing fruitful and inspiring exchanges with experimental and theoretical physicists. This volume reflects such spirit, with a diverse range of original contributions by experts, presenting an up-to-date collection of most relevant results and challenging open problems. It has been conceived with the deliberate two-fold purpose of serving as an updated reference for recent results, mathematical tools, and the vast related literature on the one hand, and as a bridge towards several key open problems that will surely form the forthcoming research agenda in this field.

range in algebra definition: Generalized B*-Algebras and Applications Maria Fragoulopoulou, Atsushi Inoue, Martin Weigt, Ioannis Zarakas, 2022-06-09 This book reviews the theory of 'generalized B*-algebras' (GB*-algebras), a class of complete locally convex *-algebras which includes all C*-algebras and some of their extensions. A functional calculus and a spectral theory for GB*-algebras is presented, together with results such as Ogasawara's commutativity condition, Gelfand-Naimark type theorems, a Vidav-Palmer type theorem, an unbounded representation theory, and miscellaneous applications. Numerous contributions to the subject have been made since its initiation by G.R. Allan in 1967, including the notable early work of his student P.G. Dixon. Providing an exposition of existing research in the field, the book aims to make this growing theory as familiar as possible to postgraduate students interested in functional analysis, (unbounded) operator theory and its relationship to mathematical physics. It also addresses researchers

interested in extensions of the celebrated theory of C*-algebras.

range in algebra definition: Carnegie Institution of Washington Publication , 1907 range in algebra definition: Algebra and Trigonometry Cynthia Y. Young, 2017-11-20 Cynthis Young's Algebra & Trigonometry, Fourth Edition will allow students to take the guesswork out of studying by providing them with a clear roadmap: what to do, how to do it, and whether they did it right, while seamlessly integrating to Young's learning content. Algebra & Trigonometry, Fourth Edition is written in a clear, single voice that speaks to students and mirrors how instructors communicate in lecture. Young's hallmark pedagogy enables students to become independent, successful learners. Varied exercise types and modeling projects keep the learning fresh and motivating. Algebra & Trigonometry 4e continues Young's tradition of fostering a love for succeeding in mathematics.

range in algebra definition: Non-cooperative Equilibria of Fermi Systems with Long Range Interactions Jean-Bernard Bru, Walter de Siqueira Pedra, 2013-06-28 The authors define a Banach space \mathbb{M}_{1} of models for fermions or quantum spins in the lattice with long range interactions and make explicit the structure of (generalized) equilibrium states for any \mathbb{M}_{1} in \mathcal{M}_{1}\$. In particular, the authors give a first answer to an old open problem in mathematical physics--first addressed by Ginibre in 1968 within a different context--about the validity of the so-called Bogoliubov approximation on the level of states. Depending on the model \mathbb{M}_{1} in \mathcal{M}_{1}\$, the authors' method provides a systematic way to study all its correlation functions at equilibrium and can thus be used to analyze the physics of long range interactions. Furthermore, the authors show that the thermodynamics of long range models \mathbb{M}_{1} in \mathcal{M}_{1}\$ is governed by the non-cooperative equilibria of a zero-sum game, called here thermodynamic game.

range in algebra definition: *E. F. Codd and Relational Theory, Revised Edition* C. J. Date, E. F. Codd's relational model of data has been described as one of the three greatest inventions of all time (the other two being agriculture and the scientific method), and his receipt of the 1981 ACM Turing Award, the top award in computer science, for inventing it was thoroughly deserved. The papers in which Codd first described his model were staggering in their originality; they had, and continue to have, a huge impact on just about every aspect of the way we do business in the world today. And yet few people, even in the professional database community, are truly familiar with those papers. This book—a thorough overhaul and rewrite of an earlier book by the same name—is an attempt to remedy this sorry state of affairs. In it, well known author C. J. Date provides a detailed examination of all of Codd's major database publications, explaining the nature of his contribution in depth, and in particular highlighting not only the many things he got right but also some of the things he got wrong. Database theory and practice have evolved considerably since Codd first defined his relational model, back in 1969. This book draws on decades of experience to present the most up to date treatment of the material possible. Anyone with a professional interest in databases can benefit from the insights it contains. The book is product independent.

range in algebra definition: Advances in Databases and Information Systems Joe Tekli, Johann Gamper, Richard Chbeir, Yannis Manolopoulos, 2024-09-01 This volume LNCS 14918 constitutes the refereed proceedings of 28th European Conference, ADBIS 2024, held in Bayonne, France, during August 28-31, 2024. The 15 full papers presented were carefully reviewed and selected from 43 submissions. The conference focuses on Algebra, Models, Schemata, Discovery and Data Analysis, Algorithms and Optimization, Access Methods and Query Processing, Advanced Architectures, Machine Learning, Large Language Models.

range in algebra definition: Foundations and Interpretation of Quantum Mechanics Gennaro Auletta, Giorgio Parisi, 2001 The aim of this book is twofold: to provide a comprehensive account of the foundations of the theory and to outline a theoretical and philosophical interpretation suggested from the results of the last twenty years. There is a need to provide an account of the foundations of the theory because recent experience has largely confirmed the theory and offered a wealth of new discoveries and possibilities. On the other side, the following results have generated a

new basis for discussing the problem of the interpretation: the new developments in measurement theory; the experimental generation of ?Schr\dinger cats?; recent developments which allow, for the first time, the simultaneous measurement of complementary observables; quantum information processing, teleportation and computation. To accomplish this task, the book combines historical, systematic and thematic approaches.

range in algebra definition: Applied Mathematical Methods: Dasgupta, Bhaskar, 2006 Applied Mathematical Methods covers the material vital for research in today's world and can be covered in a regular semester course. It is the consolidation of the efforts of teaching the compulsory first semester post-graduate applied mathematics course at the Department of Mechanical Engineering at IIT Kanpur in two successive years.

range in algebra definition: Banach Algebras and the General Theory of *-Algebras: Volume 1, Algebras and Banach Algebras Theodore W. Palmer, 1994-03-25 This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.

range in algebra definition: Mathematical Morphology and Its Applications to Image and Signal Processing Petros Maragos, Ronald W. Schafer, Muhammad Akmal Butt, 2012-12-06 Mathematical morphology (MM) is a powerful methodology for the quantitative analysis of geometrical structures. It consists of a broad and coherent collection of theoretical concepts, nonlinear signal operators, and algorithms aiming at extracting, from images or other geometrical objects, information related to their shape and size. Its mathematical origins stem from set theory, lattice algebra, and integral and stochastic geometry. MM was initiated in the late 1960s by G. Matheron and J. Serra at the Fontainebleau School of Mines in France. Originally it was applied to analyzing images from geological or biological specimens. However, its rich theoretical framework, algorithmic efficiency, easy implementability on special hardware, and suitability for many shapeoriented problems have propelled its widespread diffusion and adoption by many academic and industry groups in many countries as one among the dominant image analysis methodologies. The purpose of Mathematical Morphology and its Applications to Image and Signal Processing is to provide the image analysis community with a sampling from the current developments in the theoretical (deterministic and stochastic) and computational aspects of MM and its applications to image and signal processing. The book consists of the papers presented at the ISMM'96 grouped into the following themes: Theory Connectivity Filtering Nonlinear System Related to Morphology Algorithms/Architectures Granulometries, Texture Segmentation Image Seguence Analysis Learning **Document Analysis Applications**

range in algebra definition: Operator Algebras and Quantum Statistical Mechanics Ola Bratteli, Derek William Robinson, 2012-12-06 In this book we describe the elementary theory of operator algebras and parts of the advanced theory which are of relevance, or potentially of relevance, to mathematical physics. Subsequently we describe various applications to quantum statistical mechanics. At the outset of this project we intended to cover this material in one volume but in the course of develop ment it was realized that this would entail the omission of various interesting topics or details. Consequently the book was split into two volumes, the first devoted to the general theory of operator algebras and the second to the applications. This splitting into theory and applications is conventional but somewhat arbitrary. In the last 15-20 years mathematical physicists have realized the importance of operator algebras and their states and automorphisms for problems offield theory and statistical mechanics. But the theory of 20 years ago was largely

developed for the analysis of group representations and it was inadequate for many physical applications. Thus after a short honey moon period in which the new found tools of the extant theory were applied to the most amenable problems a longer and more interesting period ensued in which mathematical physicists were forced to redevelop the theory in relevant directions. New concepts were introduced, e. g. asymptotic abelian ness and KMS states, new techniques applied, e. g. the Choquet theory of barycentric decomposition for states, and new structural results obtained, e. g. the existence of a continuum of nonisomorphic type-three factors.

range in algebra definition: Interpreting Quantum Theories Laura Ruetsche, 2011-06-02 Traditionally, philosophers of quantum mechanics have addressed exceedingly simple systems: a pair of electrons in an entangled state, or an atom and a cat in Dr. Schrödinger's diabolical device. But recently, much more complicated systems, such as quantum fields and the infinite systems at the thermodynamic limit of quantum statistical mechanics, have attracted, and repaid, philosophical attention. Interpreting Quantum Theories has three entangled aims. The first is to guide those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame. The second aim is to develop and defend answers to some of those questions. Does quantum field theory demand or deserve a particle ontology? How (if at all) are different states of broken symmetry different? And what is the proper role of idealizations in working physics? The third aim is to highlight ties between the foundational investigation of QM infinity and philosophy more broadly construed, in particular by using the interpretive problems discussed to motivate new ways to think about the nature of physical possibility and the problem of scientific realism.

range in algebra definition: Mathematical Foundations of Finite Elements and Iterative Solvers Paolo Gatto, 2022-06-27 "This book combines an updated look, at an advanced level, of the mathematical theory of the finite element method (including some important recent developments), and a presentation of many of the standard iterative methods for the numerical solution of the linear system of equations that results from finite element discretization, including saddle point problems arising from mixed finite element approximation. For the reader with some prior background in the subject, this text clarifies the importance of the essential ideas and provides a deeper understanding of how the basic concepts fit together." — Richard S. Falk, Rutgers University "Students of applied mathematics, engineering, and science will welcome this insightful and carefully crafted introduction to the mathematics of finite elements and to algorithms for iterative solvers. Concise, descriptive, and entertaining, the text covers all of the key mathematical ideas and concepts dealing with finite element approximations of problems in mechanics and physics governed by partial differential equations while interweaving basic concepts on Sobolev spaces and basic theorems of functional analysis presented in an effective tutorial style." — J. Tinsley Oden, The University of Texas at Austin This textbook describes the mathematical principles of the finite element method, a technique that turns a (linear) partial differential equation into a discrete linear system, often amenable to fast linear algebra. Reflecting the author's decade of experience in the field, Mathematical Foundations of Finite Elements and Iterative Solvers examines the crucial interplay between analysis, discretization, and computations in modern numerical analysis; furthermore, it recounts historical developments leading to current state-of-the-art techniques. While self-contained, this textbook provides a clear and in-depth discussion of several topics, including elliptic problems, continuous Galerkin methods, iterative solvers, advection-diffusion problems, and saddle point problems. Accessible to readers with a beginning background in functional analysis and linear algebra, this text can be used in graduate-level courses on advanced numerical analysis, data science, numerical optimization, and approximation theory. Professionals in numerical analysis and finite element methods will also find the book of interest.

Related to range in algebra definition

RANGE Definition & Meaning - Merriam-Webster range, gamut, compass, sweep, scope, orbit mean the extent that lies within the powers of something (as to cover or control). range is a general

term indicating the extent of one's

RANGE | **English meaning - Cambridge Dictionary** RANGE definition: 1. a set of similar things: 2. the goods made by one company or goods of one particular type that. Learn more

The Range (Statistics) - Math is Fun The Range is the difference between the lowest and highest values. In 4, 6, 9, 3, 7 the lowest value is 3, and the highest is 9

RANGE Definition & Meaning | Range definition: the extent to which or the limits between which variation is possible.. See examples of RANGE used in a sentence

Range - definition of range by The Free Dictionary The maximum extent or distance limiting operation, action, or effectiveness, as of a sound, radio signal, instrument, firearm, or aircraft: the limited range of the telescope; out of range of their

RANGE - Definition & Translations | Collins English Dictionary The range of something is the maximum area within which it can reach things or detect things. If things range between two points or range from one point to another, they vary within these

range - Wiktionary, the free dictionary Synonyms: distance, radius We could see the ship at a range of five miles. One can use the speed of sound to estimate the range of a lightning flash. The maximum distance

RANGE Definition & Meaning - Merriam-Webster range, gamut, compass, sweep, scope, orbit mean the extent that lies within the powers of something (as to cover or control). range is a general term indicating the extent of one's

RANGE | **English meaning - Cambridge Dictionary** RANGE definition: 1. a set of similar things: 2. the goods made by one company or goods of one particular type that. Learn more

The Range (Statistics) - Math is Fun The Range is the difference between the lowest and highest values. In 4, 6, 9, 3, 7 the lowest value is 3, and the highest is 9

RANGE Definition & Meaning | Range definition: the extent to which or the limits between which variation is possible.. See examples of RANGE used in a sentence

Range - definition of range by The Free Dictionary The maximum extent or distance limiting operation, action, or effectiveness, as of a sound, radio signal, instrument, firearm, or aircraft: the limited range of the telescope; out of range of their

RANGE - Definition & Translations | Collins English Dictionary The range of something is the maximum area within which it can reach things or detect things. If things range between two points or range from one point to another, they vary within these

range - Wiktionary, the free dictionary Synonyms: distance, radius We could see the ship at a range of five miles. One can use the speed of sound to estimate the range of a lightning flash. The maximum distance

Back to Home: https://explore.gcts.edu